

The Cost of Container Runtime Security

Author: Luke Stigdon, contact@lukestigdon.com

Advisor: Dr. Johannes Ullrich

Accepted: 5/13/2024

Abstract

Containerization has fundamentally changed how applications are developed, deployed,

and managed. Containers provide a lightweight, portable alternative to traditional virtual

machines and their associated infrastructure. Unfortunately, containers provide less

isolation than virtual machines, which has led to security trade-offs that organizations

must consider. Various runtimes and tools have emerged to bring added layers of security

to containerized environments. This paper aims to analyze the performance cost these

tools incur. Through an analysis of existing methods and a comprehensive set of

benchmarks and metrics, this paper will explore the benefits – and drawbacks – of

runtime security tools and container sandboxes. By analyzing and understanding the inner

workings of the available tools, administrators and developers can make informed

decisions about how they build their infrastructure. Additionally, this paper will highlight

areas of future research and discuss evolved challenges in container security.

The Cost of Container Runtime Security 2

Luke Stigdon, contact@lukestigdon.com

1. Introduction

Virtual machines (VMs) are the fundamental building blocks that power most

applications today. VMs are powered by a program known as a hypervisor that can

expose the hardware of a physical system to multiple virtual machines. Each virtual

machine runs an operating system entirely separate from the host system and any other

virtual machines running on the same hardware. The overhead of running an entire

operating system nested inside of another operating system does have performance

implications. Still, those drawbacks are usually greatly outweighed by the scaling,

operational, and security benefits that VMs provide.

Despite the numerous benefits VMs offer, they are a cumbersome level of

abstraction for many workloads. The overhead incurred by running a VM is high relative

to the resources many applications require. Many small services can run on a single

virtual machine, but for security purposes and management reasons, it's often better to

keep them separate. Before containers, as known today, many technologies were

developed to provide application isolation at the OS level and allow administrators to

prevent unwanted interference – malicious or otherwise – between applications running

on the same host.

One of the earliest examples of OS-level virtualization was the chroot1 system

call, developed by Bell Laboratories and introduced in Unix Version 7. Chroot allowed

a process to set a specific starting point for paths beginning with "/." There is little

documentation regarding the original use of chroot. Still, in 1994, the Computer

Systems Research Group at the University of California, Berkley added the chroot2

command line tool to the 4.4BSD operating system. In an accompanying book, the

authors state that the syscall was primarily used to set up restricted access to a system

(Bostic et al., 1996, p. 38). For example, if chroot has been called with the directory

/var/application and the application tries to read /etc/shadow, it would

automatically translate to /var/application/etc/shadow. In 2000, FreeBSD 4.0 – a

1 /usr/man/man2/chdir.2 – Unix Version 7

2 /usr/share/man/cat8/chroot.0 – Berkley Software Distribution 4.4

The Cost of Container Runtime Security 3

Luke Stigdon, contact@lukestigdon.com

derivative of BSD (Lucas, 2019, p. xxxvi) – introduced the jail3 system call, which is

built on top of chroot and provides additional security guarantees. Similarly, the Linux

operating system developed its own OS-level virtualization. Most notably, Linux

Containers and Docker (Hildred, 2015).

Large organizations with complex systems and sprawling infrastructure found that

neither VMs nor containers provided the right level of abstraction for their workloads4,5,6.

Because of this, many companies have developed custom orchestration systems to

automatically provision, schedule, and manage workloads using a combination of VMs

and containers (Verma et al., 2015, p. 12). One of the most influential orchestration

systems was an internally developed tool at Google called Borg. It allowed users to

define 'jobs' using a declarative syntax, and Borg would take care of scheduling,

execution, availability, and monitoring (Verma et al., 2015). Borg directly inspired the

open-source container orchestrator Kubernetes.

Containers aren't inherently insecure; they simply lack the same level of security

that virtual machines can provide. The deployment speed and scale container

orchestrators enable is a double-edged sword for modern security teams. Kubernetes is a

complex service that requires careful implementation to be effective and secure without

considering the security of applications that developers will run inside a deployed cluster.

Additionally, beyond standard security hygiene and best practices, many workloads

require an added level of security and isolation due to specific risks they entail, such as

multi-tenant environments.

1.1. CI/CD Pipelines

One of the most commonly containerized workloads is CI/CD pipelines.

Companies like GitHub and GitLab that offer pipelines as a service to users and

3 https://man.freebsd.org/cgi/man.cgi?query=jail&sektion=2&manpath=FreeBSD+4.0-

RELEASE

4 https://kubernetes.io/case-studies/spotify

5 https://kubernetes.io/case-studies/squarespace

6 https://kubernetes.io/case-studies/box

The Cost of Container Runtime Security 4

Luke Stigdon, contact@lukestigdon.com

organizations need more control over what code executes, and the sheer volume of

pipelines makes it impossible for them to review every individual execution. To improve

the security posture of their pipelines, they use temporary containers or virtual machines

spawned for each job in each pipeline. CI/CD pipelines are generally not time or

resource-sensitive, making them good candidates for adding additional runtime security.

The small amount of overhead incurred by many tools would easily go unnoticed.

Additionally, adding observability and security to CI/CD processes has become

increasingly important as threat actors target software supply chains.

1.2. "Serverless" Functions

Unlike their name suggests, serverless functions do run on a server. To the end

user, they are considered "serverless" because instead of the typical application model

that relies on a long-running process that is deployed to a server or set of servers,

"serverless" functions are snippets of code that are run on-demand for short periods in

response to a predefined trigger. The trigger could be a user uploading a profile picture,

which could trigger a function to compress and pre-convert the image to the various sizes

required by the application. Serverless functions can also be scheduled to run at specific

intervals or in response to certain events. Developers typically only pay for the time a

function is running, but platforms and providers still need to run a fleet of servers always

ready to dispatch those functions. For cost and complexity reasons, providers don't let

users decide where their function runs, only that it will run. Hundreds of arbitrary scripts

from developers anywhere in the world could execute on the same server simultaneously.

Security controls, specifically sandboxing, enable providers to guarantee a level of

isolation that will prevent any developer's code – even malicious code – from interfering

or tampering with the other functions running on the same host. Google Cloud Platform

specifically developed a technology that will be discussed later – gVisor – to secure their

serverless environments (Manor, 2018).

1.3. Data Science and Machine Learning

Data science teams rely heavily on Python and Jupyter notebooks, which allows

them to easily execute, organize, and visualize the results of their code. While notebooks

can be locally run and shared via version control, many teams leverage an additional tool

The Cost of Container Runtime Security 5

Luke Stigdon, contact@lukestigdon.com

called Jupyter Hub, which is a browser-based interface that allows them to collaborate

and execute code in a shared environment. These shared environments are commonly run

within containers or VMs and provide a way to give users a common pre-configured

environment. While administrators can tightly control the libraries that are available since

they control the images on the backend, sandboxing provides an added layer of security if

a zero-day vulnerability is found within the container runtime or malicious code happens

to have been found in a previously approved library (Hafner et al., 2021; Kaplan & Qian,

2021; Schlueter, 2016; Zahan et al., 2022).

1.4. Learning

Many languages today offer the ability to test your code in a browser via

"playgrounds."7,8 These environments will upload code to be compiled and run on a

remote server and then return the output to the user's browser. Sandboxes add an

additional layer of security to the servers handling the code. There are also learning

services such as HackerRank and Codewars, which offer hundreds of interactive

exercises for dozens of languages. These services work similarly, allowing users to

upload the code they wrote, which is compiled and executed. Without proper sandboxing,

both examples would be incredibly risky for any organization since they would

purposefully allow arbitrary remote code execution, which can be incredibly dangerous.

2. Runtime security

The key to running code safely is controlling exactly what resources the

environment has access to. Improperly configured containers can allow the processes

running inside them to execute with higher permissions than they should normally have

and glean additional information about the underlying host. In many cases, this is easier

said than done. Even trivial applications can require access to hundreds of files and

directories to load libraries, read and write data, and otherwise interact with a system.

Access to the Internet or other network resources is another common requirement.

7 https://play.rust-lang.org

8 https://go.dev/play

The Cost of Container Runtime Security 6

Luke Stigdon, contact@lukestigdon.com

Logging, auditing, and controlling these interactions – especially at scale – is a difficult

problem, but it is vital to maintaining a robust security posture.

Security teams must often make trade-offs between following security best

practices and meeting stakeholders' requirements. There are sometimes dozens of

products to evaluate when looking for a solution to a specific problem. This level of

choice gives administrators the flexibility they need to meet the requirements specific to

their organization. However, it also makes reviewing and understanding every available

option difficult. This paper aims to make understanding the ever-changing landscape of

choices easier by focusing on the most common underlying technologies that power

runtime security tools.

2.1. Hardened Runtimes

One of the most straightforward methods to increase the security and isolation of

containers is to use a security-focused runtime. The container runtime software is

responsible for managing the lifecycle of container processes. It handles every event

during a container's lifetime, from its initial creation to its final termination (Open

Container Initiative, 2024, p. 6). This research will analyze two popular runtimes: gVisor

and Kata Containers. Both projects are open source and implement the Open Container

Initiative's (OCI) runtime specification. They also aim to provide an additional layer of

security while providing efficiency levels similar to a standard container runtime.

gVisor is an open-source project, initially developed at Google (Lacasse, 2018). It

adds an extra layer of isolation between containers and the host operating system through

its OCI-compliant runtime runsc. Every container launched by runsc runs within a

sandbox that has two additional processes9. A Sentry that intercepts and responds to

system calls from the container, and a Gopher which provides restricted filesystem

access. This model allows gVisor to effectively isolate the container as a VM while not

requiring the same amount of overhead as a full virtual machine. The application itself is

written in Go and is very memory and CPU-efficient; however, because it must translate

9 https://gvisor.dev/docs

The Cost of Container Runtime Security 7

Luke Stigdon, contact@lukestigdon.com

system calls before passing them to the host's kernel, certain tasks such as filesystem I/O

and maintaining network connections have a noticeable overhead.

Kata containers have the same goal as gVisor, but instead of acting as a shim, the

kata runtime launches the container in a "lightweight" virtual machine10. Kata's OCI-

compliant runtime is exposed through the containerd-shim-kata-v2 command line

tool. The runtime interacts with a hypervisor to launch a dedicated virtual machine for

each container. Because Kata launches a VM for each container, it can guarantee the

same level of isolation that VMs offer. The virtual machine images and hypervisors11 that

the Kata supports are highly optimized for containerized workloads. Still, it does incur a

performance penalty due to the added overhead. By default, it uses QEMU, a type 2

KVM hypervisor, but it also supports newer, container-optimized Virtual Machine

Monitors (VMM) such as Cloud Hypervisor and Firecracker. While a full analysis is out

of scope for this paper, Firecracker was specifically developed by AWS for their Lambda

and Fargate services to provide faster function execution and higher isolation via a

purpose-built hypervisor (Gupta & Lian, 2018).

2.2. Linux Kernel Security Modules

Linux Kernel Security Modules, or simply Linux Security Modules (LSMs), are

kernel modules loaded to enforce additional security controls on a system. The two most

10 https://github.com/kata-containers/kata-containers/tree/3.3.0/docs/design/architecture

11 https://github.com/kata-containers/kata-containers/blob/3.3.0/docs/hypervisors.md

Figure 1 gVisor Architecture

The Cost of Container Runtime Security 8

Luke Stigdon, contact@lukestigdon.com

prevalent security modules are AppArmor and SELinux, which implement forms of

mandatory access control (MAC). On a standard Linux system, files and processes are

associated with a user, group, and a "mode" that determines the permissions given to the

owner, group, and any other users on the system12. The "mode" is expressed as a three-

digit octal number where the first, second, and third digits correspond to the owner,

group, and 'others,' respectively. Each number represents the permissions – read, write, or

execute – that can be given to the specific entity in that position. Each permission has a

numeric value of 1 (execute), 2 (write), or 4 (read). Adding them together can express

multiple permissions. For example, 'read' and 'execute' (1+4) would be 5. A complete

example of a real file might look like this:

-rw-r----- 1 root shadow 903 Mar 18 01:04 /etc/shadow

The permissions in octal would be 640, meaning the owner, root, can read and write to

/etc/shadow, any user belonging to the group shadow can read the file, and everyone

else would get permission denied. This system is known as Discretionary Access Control

(DAC), and it is a straightforward and robust framework for administrators to control

access to files and processes.

Mandatory Access Control adds an additional level of control by defining extra

rules – sometimes called policies – for valid interactions between a subject and an object

(Belim & Belim, 2018). LSMs implement this by processing additional rules and security

attributes attached to files, processes, and users to make more informed permission

decisions. AppArmor allows a 'profile' to be applied to a running process. This profile

explicitly defines all the directories and files a process should be able to access. Because

the permissions are explicitly defined, even if a user could escape a running process, e.g.,

a container, they would still be confined by the rules specified in the profile, and their

access would remain limited. SELinux offers similar protections via security labels –

called contexts – applied to every file and process on the system. The context of a process

defines what it can and cannot access. For example, if a web server tried to read files that

belonged to a database, SELinux would automatically block the web server's attempts

unless a rule was added to allow the behavior. While these protections offered by LSMs

12 https://tldp.org/LDP/intro-linux/html/sect_03_04.html

The Cost of Container Runtime Security 9

Luke Stigdon, contact@lukestigdon.com

aren't as strong as the isolation of a virtual machine, they can still be an incredibly

effective security measure if properly applied.

2.3. eBPF

Extended Berkley Packet Filters (eBPF) is another technology inside the Linux

kernel that provides powerful networking, observability, and security features. BPF was

initially introduced as the "BSD Packet Filter" for the BSD operating system in 1992

(McCanne & Jacobson, 1993). It provided a way for users to efficiently capture and filter

network packets by implementing a BPF virtual machine within the kernel that could

execute user-provided instructions via an interpreter. This novel approach had two

benefits. First, it was highly efficient because it avoided the expensive operation of

copying every network packet to a user-space program and instead executed the

instructions directly in the kernel – only returning the packets matched by the filter. The

second benefit was the safety added by an additional layer of verification the BPF virtual

Figure 2 BPF Performance Tools

The Cost of Container Runtime Security 10

Luke Stigdon, contact@lukestigdon.com

machine added. Before executing the user's instructions, the interpreter validates that the

instructions are valid and safe.

BPF, as it exists today, is nearly indistinguishable from its humble beginnings as a

simple packet filter. The technology has evolved into a general-purpose execution engine

that allows users to write programs that can monitor virtually every aspect of the Linux

operating system. The book "BPF Performance Tools: Linux System and Application

Observability" by Brendan Gregg highlights the multitude of monitoring tools now

powered by BPF (Gregg, 2019).

Despite its differences from "classic BPF" (the original implementation), eBPF

maintains the same performance and safety guarantees as its predecessor. These

guarantees are a large part of the success it has seen today. When faced with the choice of

implementing a kernel module or a BPF program, BPF is usually the much better choice.

Some of the most popular Kubernetes runtime security tools today are all powered by

eBPF: Tracee13, Falco14, and Tetragon15. The way that these runtimes work is similar to

gVisor. However, instead of inserting a process between the container and the host that

intercepts system calls before they reach the kernel, the runtimes inject eBPF programs

directly into the kernel that monitor for specific events and syscalls. This leads to much

better performance with the added flexibility of being able to write custom rules similar

to the "profiles" that LSMs use to deny or allow actions. Another benefit is the increased

visibility eBPF provides. Rather than intercepting and blocking certain actions, these

runtimes can feed events to external monitoring system which allows administrators to

collect details metrics, improve incident response, and proactively respond to unexpected

behaviors.

13 https://github.com/aquasecurity/tracee

14 https://github.com/falcosecurity/falco

15 https://github.com/cilium/tetragon

The Cost of Container Runtime Security 11

Luke Stigdon, contact@lukestigdon.com

3. Research Method

Each technology will be analyzed based on the isolation level it provides from the

infrastructure it runs within and the performance cost that isolation incurs. Generally

speaking, the higher the level of isolation, the higher the performance cost; however, due

to the diverse nature of workloads and various optimizations that exist, e.g., GPU-

optimized workloads may be less impacted by higher levels of isolation from the host

since the calculations are offloaded to the GPU and certain tasks may perform actions

that are more sensitive to network latency as opposed to system call bottlenecks.

A set of tests was chosen from the Phoronix Test Suite, a set of standardized

benchmarks covering CPU, memory, and I/O intensive workloads.

3.1. Hardware and Software

The hardware selected for this test comprises four Turing RK1 Compute modules,

each with 16 GB of memory and an 8-core 64-bit ARM processor16. The nodes will run a

v1.29.2 Kubernetes cluster, and scheduling will be configured so that only one pod can

run a node at a given time. Pods will be limited to consuming at most 4 CPU cores and 8

GB of memory. Each node is running the following software and versions:

Software Version

Host Operating System Ubuntu 22.04.4 LTS

Kernel 5.10.160-rockchip aarch64

AppArmor 3.0.4-2ubuntu2.3

containerd 1.7.13

runc 1.1.12

gVisor (runsc) release-20240311.0

kata-runtime 3.3.0

qemu-system-aarch64 7.2.0

Tetragon 1.0.3

16 https://docs.turingpi.com/docs/turing-rk1-specs-and-io-ports

The Cost of Container Runtime Security 12

Luke Stigdon, contact@lukestigdon.com

The testing and result collection will be orchestrated via the Phoronix Test Suite,

which is the tool developed by Phoronix Media to power OpenBenchmarking.org. The

Pronix Test Suite contains hundreds of open-source benchmarks that cover dozens of

different applications and performance tools. Leveraging an existing and widely deployed

benchmarking tool will help reduce the chances of introducing testing biases and provide

results that can be objectively compared against the millions of existing results hosted by

OpenBenchmarking.org. The following tests will be executed as part of the test suite for

this research:

Test Parameters

pts/nginx-3.0.1 20 and 100 active connections

pts/redis-1.4.0

SET, GET, LPUSH, LPOP, and

SADD with 50 parallel

connections

pts/unpack-linux-1.2.0 N/A

pts/compress-zstd-1.6.0 Compression Level 3

The Cost of Container Runtime Security 13

Luke Stigdon, contact@lukestigdon.com

4. Findings and Discussion

4.1.1. NGINX Requests per Second

This test was performed with two configurations, one with 20 active connections

and another with 100. The goal was to measure the number of requests per second that a

nginx server could handle. A higher number of requests per second is desirable. This test

is primarily CPU-bound but involves lower-level system calls for establishing and

maintaining TCP connections. Immediately, the impacts on performance that running

containers within a sandbox become apparent. Figure 2 below, shows the average

number of requests per second the containers could handle. The requests per second were

not significantly impacted by the number of concurrent connections tested. Still, the

sandbox that the containers were running under caused a drastic change in the number of

connections.

Unfortunately for gVisor and Kata containers, the first test highlights their biggest

weakness, handling network connections. The drastic difference here is the overhead

added to the syscalls required for every request. In the case of the kata container, the

inefficiencies of running a network stack within a virtual machine have a big impact on

performance. Still, they are not nearly as large as the impact that gVisor imposes. gVisor

suffers from the overhead the Sentry adds by needing to intercept and translate the

Figure 3 NGINX requests per second

The Cost of Container Runtime Security 14

Luke Stigdon, contact@lukestigdon.com

required syscalls for every request it handles. Tetragon performed similarly to a standard

container, which is to be expected since the underlying mechanism – an eBPF program –

is running directly inside the kernel. There does appear to be a slight drop in capacity for

the 100 req/sec test, but the difference is negligible.

4.1.2. Zstandard Compression

Zstandard (zstd) is an open-source lossless compression algorithm developed at

Facebook17. It was created as a fast and efficient compression algorithm focusing on real-

time compression scenarios. This workload is CPU intensive and is an example of

something a sandboxed application might have to deal with regularly. For example, a

serverless function might be triggered to fetch compressed data from an object store.

Serverless functions are typically short-lived and billed by the amount of time they run.

They are also commonly executed within a sandbox to maintain security while achieving

scale in multi-tenant environments.

Compared to the previous NGINX example, the results between the containers

were practically indistinguishable. Kata containers even showed a slight improvement in

17 https://github.com/facebook/zstd

Figure 4 Zstandard Compression Throughput

The Cost of Container Runtime Security 15

Luke Stigdon, contact@lukestigdon.com

compression speed. The cause of this improvement was unclear at the time of testing but

may have been related to the fact that the QEMU virtual machines launched by the kata-

runtime were using a more recent Linux kernel (6.1.62-126), which could have contained

patches and optimizations that the host kernel did not have.

4.1.3. Redis

Redis is an in-memory key-value store used by many applications. It is favored

for its speed and scalability, which enable it to handle millions of requests efficiently.

Even in this small test environment, the number of requests the benchmark tools were

able to generate was impressive. Unfortunately, this test highlighted the weakness of kata

containers and gVisor, which is similar to the NGINX benchmark.

gVisor took another large performance hit in this scenario due to the overhead

introduced by its syscall filtering. Interestingly, kata containers did not appear to take as

much of a performance hit. They performed marginally lower than the Baseline and

Tetragon benchmark runs but not as significantly as the NGINX benchmark. As was

mentioned previously, this is not something that would typically need to run in a sandbox

since Redis is a "trusted" application and doesn't run any arbitrary code, but it does

highlight the importance of understanding an organization's applications and testing for

its specific environment. It would have been easy to assume that Kata might have

suffered a similar penalty in this test based on the NGINX benchmark. However, this is

not the case.

Figure 5 Redis Requests per Second

The Cost of Container Runtime Security 16

Luke Stigdon, contact@lukestigdon.com

4.1.4. Unpacking the Linux Kernel

The final benchmark focused on filesystem performance. While extracting a large

tarball isn't a common occurrence, it is a good way to get a general idea of the

performance of a filesystem. The compressed source code for the Linux kernel is

hundreds of megabytes and contains thousands of files. Extracting those contents is a

quick way to identify file operation bottlenecks. This benchmark measures the amount of

time it takes (in seconds) to extract the source tarball, lower values are considered better.

The results of this test were initially surprising. The benchmark runs with no

sandboxing and the runs with Tetragon performed similarly – and had the best

performance – but the gVisor and Kata runs showed that file operations were

significantly impacted. Kata containers also had a large variance between runs, with the

slowest taking 99 seconds and the fastest run still taking 66 seconds. None of the other

runtimes had such wide variances. Upon further investigation, the performance impact

seemed to derive from QEMU's implementation of shared host paths.

Figure 6 Unpacking the Linux Kernel

The Cost of Container Runtime Security 17

Luke Stigdon, contact@lukestigdon.com

To avoid any bottlenecks or testing complexities that an external storage provider

could introduce, the tests were performed in an emtpyDir18 volume, which mounts a

temporary directory from the host directly into the container. The directory on the host is

ephemeral, so the data does not persist when a pod restarts. However, there should not be

any filesystem overhead other than the overhead introduced by the sandbox.

Additionally, the ephemeral nature of the directory ensured that each test run had a clean

environment. Unfortunately, since kata containers are run inside a virtual machine the

way that QEMU and, by extension, the kata runtime mounts directories from the host into

the VM by setting up a virtual network and using the 9P network protocol to

communicate between the guest and the host. The 9P protocol is simple and effective but

has performance limitations exposed by this test. Switching to /tmp within the container

improved consistency and performance, but the average runtime was still 73 seconds,

which was considerably slower than even gVisor.

5. Recommendations and Implications

As this research has demonstrated, there are many factors to consider when

analyzing what solutions might work for your situation. It is also important to remember

that the solutions presented here are not a silver bullet and only represent individual

layers that should be included as part of a broader security strategy for an organization's

environment. Hardened runtimes such as gVisor and Kata Containers – while costly for

specific workloads – should be seriously considered in multi-tenant environments or

where high isolation levels are required. While the tests today exposed some of their

weaknesses, they have continued to improve over time and will only improve from now

on. For Kata Containers specifically, there was no time to delve into further

optimizations, but the runtime itself is highly configurable and can most likely fit many

workloads not addressed here.

One of the most promising developments discovered during the research for this

paper is the progress and capabilities shown by BPF. While hardened runtimes are

18 https://kubernetes.io/docs/concepts/storage/volumes#emptydir

The Cost of Container Runtime Security 18

Luke Stigdon, contact@lukestigdon.com

necessary in some scenarios, the added security and observability provided by BPF-based

runtime security tools are hard to overlook. They should be considered a standard

addition to any new environment. Tetragon specifically positioned itself as a complement

to existing LSMs and provides powerful capabilities that enable administrators to respond

proactively to emerging threats.

6. Conclusion

This paper has shown that there are many available tools to choose from when

administrators need to add additional layers of defense to their infrastructure. The

container runtime security landscape constantly evolves, and each new technology aims

to be better than the last but inevitably involves considering some trade-offs.

Nevertheless, this paper's examination found that because of that constant improvement,

developers and administrators should be able to find the right balance of security and

performance for their needs. Additionally, our research identified eBPF as a major area of

future growth and research. The observability, control, and performance offered by BPF

can allow an administrator to monitor and secure their infrastructure through a common

interface and allow them to react to emerging threats in a way that was not possible

previously.

The Cost of Container Runtime Security 19

Luke Stigdon, contact@lukestigdon.com

References

Belim, S. V., & Belim, S. Yu. (2018). Implementation of Mandatory Access Control in

Distributed Systems. Automatic Control and Computer Sciences, 52(8), 1124–

1126. https://doi.org/10.3103/S0146411618080357

Bell Laboratories. (1979). Unix (Version 7) [Computer software].

https://www.tuhs.org/cgi-bin/utree.pl?file=V7

Bostic, K., Karels, M. J., & Quarterman, J. S. (1996). The design and implementation of

the 4.4BSD operating system (M. K. McKusick, Ed.). Addison-Wesley.

Computer Systems Research Group. (1994). Berkley Software Distribution (4.4)

[Computer software]. https://www.tuhs.org/cgi-bin/utree.pl?file=4.4BSD

Gregg, B. (2019, July 15). BPF Performance Tools: Linux System and Application

Observability. Brendan Gregg’s Blog. https://www.brendangregg.com/blog/2019-

07-15/bpf-performance-tools-book.html

Gupta, A., & Lian, L. (2018, November 27). Announcing the Firecracker Open Source

Technology: Secure and Fast microVM for Serverless Computing. AWS Open

Source Blog. https://aws.amazon.com/blogs/opensource/firecracker-open-source-

secure-fast-microvm-serverless/

Hafner, A., Mur, A., & Bernard, J. (2021). Node package manager’s dependency network

robustness (arXiv:2110.11695). arXiv. http://arxiv.org/abs/2110.11695

Hildred, T. (2015, August 28). The History of Containers. Red Hat Blog.

https://www.redhat.com/en/blog/history-containers

Kaplan, B., & Qian, J. (2021). A Survey on Common Threats in npm and PyPi Registries

(arXiv:2108.09576). arXiv. http://arxiv.org/abs/2108.09576

The Cost of Container Runtime Security 20

Luke Stigdon, contact@lukestigdon.com

Lacasse, N. (2018, May 2). Open-sourcing gVisor, a sandboxed container runtime.

Google Cloud Platform Blog. https://cloud.google.com/blog/products/identity-

security/open-sourcing-gvisor-a-sandboxed-container-runtime

Lucas, M. W. (2019). Absolute FreeBSD: The complete guide to FreeBSD (3rd edition).

No Starch Press.

Manor, E. (2018, July 24). Bringing the best of serverless to you. Google Cloud Platform

Blog. https://cloudplatform.googleblog.com/2018/07/bringing-the-best-of-

serverless-to-you.html

McCanne, S., & Jacobson, V. (1993, January). The BSD Packet Filter: A New

Architecture for User-level Packet Capture. USENIX Winter 1993 Conference

(USENIX Winter 1993 Conference). https://www.usenix.org/conference/usenix-

winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet

Open Container Initiative. (2024). Open Container Initiative Runtime Specification

(1.2.0). https://github.com/opencontainers/runtime-spec/releases/tag/v1.2.0

Schlueter, I. (2016, March 26). Kik, left-pad, and npm. Npm Blog.

https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm

The Kata Authors. (n.d.). Kata Containers (3.3.0) [Computer software]. OpenInfra

Foundation. https://github.com/kata-containers/kata-containers

The Kubernetes Authors. (n.d.-a). Case study: Box. Kubernetes User Case Studies.

Retrieved May 11, 2024, from https://kubernetes.io/case-studies/box/

The Kubernetes Authors. (n.d.-b). Case study: Spotify. Kubernetes User Case Studies.

Retrieved May 11, 2024, from https://kubernetes.io/case-studies/spotify/

The Cost of Container Runtime Security 21

Luke Stigdon, contact@lukestigdon.com

The Kubernetes Authors. (n.d.-c). Case study: Squarespace. Kubernetes User Case

Studies. Retrieved May 11, 2024, from https://kubernetes.io/case-

studies/squarespace/

The Phoronix Test Suite Authors. (n.d.). Phoronix Test Suite (10.8.4) [Computer

software]. Phoronix. https://github.com/phoronix-test-suite/phoronix-test-suite

The Tetragon Authors. (n.d.). Tetragon (1.0.3) [Computer software]. Cloud Native

Computing Foundation. https://github.com/cilium/tetragon

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J. (2015).

Large-scale cluster management at Google with Borg. Proceedings of the Tenth

European Conference on Computer Systems, 1–17.

https://doi.org/10.1145/2741948.2741964

Zahan, N., Zimmermann, T., Godefroid, P., Murphy, B., Maddila, C., & Williams, L.

(2022). What are Weak Links in the npm Supply Chain? Proceedings of the 44th

International Conference on Software Engineering: Software Engineering in

Practice, 331–340. https://doi.org/10.1145/3510457.3513044

The Cost of Container Runtime Security 22

Luke Stigdon, contact@lukestigdon.com

Appendix

Results

	1. Introduction
	1.1. CI/CD Pipelines
	1.2. "Serverless" Functions
	1.3. Data Science and Machine Learning
	1.4. Learning

	2. Runtime security
	2.1. Hardened Runtimes
	2.2. Linux Kernel Security Modules
	2.3. eBPF

	3. Research Method
	3.1. Hardware and Software

	4. Findings and Discussion
	4.1.1. NGINX Requests per Second
	4.1.2. Zstandard Compression
	4.1.3. Redis
	4.1.4. Unpacking the Linux Kernel

	5. Recommendations and Implications
	6. Conclusion
	References

