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Abstract

Containerization has fundamentally changed how applications are developed, deployed,
and managed. Containers provide a lightweight, portable alternative to traditional virtual
machines and their associated infrastructure. Unfortunately, containers provide less
isolation than virtual machines, which has led to security trade-offs that organizations
must consider. Various runtimes and tools have emerged to bring added layers of security
to containerized environments. This paper aims to analyze the performance cost these
tools incur. Through an analysis of existing methods and a comprehensive set of
benchmarks and metrics, this paper will explore the benefits — and drawbacks — of
runtime security tools and container sandboxes. By analyzing and understanding the inner
workings of the available tools, administrators and developers can make informed
decisions about how they build their infrastructure. Additionally, this paper will highlight
areas of future research and discuss evolved challenges in container security.
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1. Introduction

Virtual machines (VMs) are the fundamental building blocks that power most
applications today. VMs are powered by a program known as a hypervisor that can
expose the hardware of a physical system to multiple virtual machines. Each virtual
machine runs an operating system entirely separate from the host system and any other
virtual machines running on the same hardware. The overhead of running an entire
operating system nested inside of another operating system does have performance
implications. Still, those drawbacks are usually greatly outweighed by the scaling,

operational, and security benefits that VMs provide.

Despite the numerous benefits VMs offer, they are a cumbersome level of
abstraction for many workloads. The overhead incurred by running a VM is high relative
to the resources many applications require. Many small services can run on a single
virtual machine, but for security purposes and management reasons, it's often better to
keep them separate. Before containers, as known today, many technologies were
developed to provide application isolation at the OS level and allow administrators to
prevent unwanted interference — malicious or otherwise — between applications running

on the same host.

One of the earliest examples of OS-level virtualization was the chroot?! system
call, developed by Bell Laboratories and introduced in Unix Version 7. Chroot allowed
a process to set a specific starting point for paths beginning with " /." There is little
documentation regarding the original use of chroot. Still, in 1994, the Computer
Systems Research Group at the University of California, Berkley added the chroot?
command line tool to the 4.4BSD operating system. In an accompanying book, the
authors state that the syscall was primarily used to set up restricted access to a system
(Bostic et al., 1996, p. 38). For example, if chroot has been called with the directory
/var/application and the application tries to read /etc/shadow, it would

automatically translate to /var/application/etc/shadow. In 2000, FreeBSD 4.0 —a

1 Jusr/man/man2/chdir.2 — Unix Version 7

2 Jusr/share/man/cat8/chroot.0 — Berkley Software Distribution 4.4
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derivative of BSD (Lucas, 2019, p. xxxvi) — introduced the jai1° system call, which is
built on top of chroot and provides additional security guarantees. Similarly, the Linux
operating system developed its own OS-level virtualization. Most notably, Linux
Containers and Docker (Hildred, 2015).

Large organizations with complex systems and sprawling infrastructure found that
neither VMs nor containers provided the right level of abstraction for their workloads*>®.
Because of this, many companies have developed custom orchestration systems to
automatically provision, schedule, and manage workloads using a combination of VMs
and containers (Verma et al., 2015, p. 12). One of the most influential orchestration
systems was an internally developed tool at Google called Borg. It allowed users to
define 'jobs’ using a declarative syntax, and Borg would take care of scheduling,
execution, availability, and monitoring (Verma et al., 2015). Borg directly inspired the

open-source container orchestrator Kubernetes.

Containers aren't inherently insecure; they simply lack the same level of security
that virtual machines can provide. The deployment speed and scale container
orchestrators enable is a double-edged sword for modern security teams. Kubernetes is a
complex service that requires careful implementation to be effective and secure without
considering the security of applications that developers will run inside a deployed cluster.
Additionally, beyond standard security hygiene and best practices, many workloads
require an added level of security and isolation due to specific risks they entail, such as

multi-tenant environments.

1.1. CI/CD Pipelines
One of the most commonly containerized workloads is CI/CD pipelines.

Companies like GitHub and GitLab that offer pipelines as a service to users and

3 https://man.freebsd.org/cgi/man.cgi?query=jail&sektion=2&manpath=FreeBSD+4.0-
RELEASE

4 https://kubernetes.io/case-studies/spotify

5 https://kubernetes.io/case-studies/squarespace

® https://kubernetes.io/case-studies/box
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organizations need more control over what code executes, and the sheer volume of
pipelines makes it impossible for them to review every individual execution. To improve
the security posture of their pipelines, they use temporary containers or virtual machines
spawned for each job in each pipeline. CI/CD pipelines are generally not time or
resource-sensitive, making them good candidates for adding additional runtime security.
The small amount of overhead incurred by many tools would easily go unnoticed.
Additionally, adding observability and security to CI/CD processes has become

increasingly important as threat actors target software supply chains.

1.2. "Serverless" Functions

Unlike their name suggests, serverless functions do run on a server. To the end
user, they are considered "serverless™ because instead of the typical application model
that relies on a long-running process that is deployed to a server or set of servers,
"serverless™ functions are snippets of code that are run on-demand for short periods in
response to a predefined trigger. The trigger could be a user uploading a profile picture,
which could trigger a function to compress and pre-convert the image to the various sizes
required by the application. Serverless functions can also be scheduled to run at specific
intervals or in response to certain events. Developers typically only pay for the time a
function is running, but platforms and providers still need to run a fleet of servers always
ready to dispatch those functions. For cost and complexity reasons, providers don't let
users decide where their function runs, only that it will run. Hundreds of arbitrary scripts
from developers anywhere in the world could execute on the same server simultaneously.
Security controls, specifically sandboxing, enable providers to guarantee a level of
isolation that will prevent any developer's code — even malicious code — from interfering
or tampering with the other functions running on the same host. Google Cloud Platform
specifically developed a technology that will be discussed later — gVisor — to secure their

serverless environments (Manor, 2018).

1.3. Data Science and Machine Learning
Data science teams rely heavily on Python and Jupyter notebooks, which allows
them to easily execute, organize, and visualize the results of their code. While notebooks

can be locally run and shared via version control, many teams leverage an additional tool

Luke Stigdon, contact@lukestigdon.com



The Cost of Container Runtime Security 5

called Jupyter Hub, which is a browser-based interface that allows them to collaborate
and execute code in a shared environment. These shared environments are commonly run
within containers or VMs and provide a way to give users a common pre-configured
environment. While administrators can tightly control the libraries that are available since
they control the images on the backend, sandboxing provides an added layer of security if
a zero-day vulnerability is found within the container runtime or malicious code happens
to have been found in a previously approved library (Hafner et al., 2021; Kaplan & Qian,
2021; Schlueter, 2016; Zahan et al., 2022).

1.4. Learning

Many languages today offer the ability to test your code in a browser via
"playgrounds."”® These environments will upload code to be compiled and run on a
remote server and then return the output to the user's browser. Sandboxes add an
additional layer of security to the servers handling the code. There are also learning
services such as HackerRank and Codewars, which offer hundreds of interactive
exercises for dozens of languages. These services work similarly, allowing users to
upload the code they wrote, which is compiled and executed. Without proper sandboxing,
both examples would be incredibly risky for any organization since they would

purposefully allow arbitrary remote code execution, which can be incredibly dangerous.

2. Runtime security

The key to running code safely is controlling exactly what resources the
environment has access to. Improperly configured containers can allow the processes
running inside them to execute with higher permissions than they should normally have
and glean additional information about the underlying host. In many cases, this is easier
said than done. Even trivial applications can require access to hundreds of files and
directories to load libraries, read and write data, and otherwise interact with a system.

Access to the Internet or other network resources is another common requirement.

" https://play.rust-lang.org
8 https://go.dev/play
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Logging, auditing, and controlling these interactions — especially at scale — is a difficult

problem, but it is vital to maintaining a robust security posture.

Security teams must often make trade-offs between following security best
practices and meeting stakeholders' requirements. There are sometimes dozens of
products to evaluate when looking for a solution to a specific problem. This level of
choice gives administrators the flexibility they need to meet the requirements specific to
their organization. However, it also makes reviewing and understanding every available
option difficult. This paper aims to make understanding the ever-changing landscape of
choices easier by focusing on the most common underlying technologies that power

runtime security tools.

2.1. Hardened Runtimes

One of the most straightforward methods to increase the security and isolation of
containers is to use a security-focused runtime. The container runtime software is
responsible for managing the lifecycle of container processes. It handles every event
during a container's lifetime, from its initial creation to its final termination (Open
Container Initiative, 2024, p. 6). This research will analyze two popular runtimes: gVisor
and Kata Containers. Both projects are open source and implement the Open Container
Initiative's (OCI) runtime specification. They also aim to provide an additional layer of

security while providing efficiency levels similar to a standard container runtime.

gVisor is an open-source project, initially developed at Google (Lacasse, 2018). It
adds an extra layer of isolation between containers and the host operating system through
its OCl-compliant runtime runsc. Every container launched by runsc runs within a
sandbox that has two additional processes®. A Sentry that intercepts and responds to
system calls from the container, and a Gopher which provides restricted filesystem
access. This model allows gVisor to effectively isolate the container as a VM while not
requiring the same amount of overhead as a full virtual machine. The application itself is

written in Go and is very memory and CPU-efficient; however, because it must translate

% https://gvisor.dev/docs
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system calls before passing them to the host's kernel, certain tasks such as filesystem 1/0

and maintaining network connections have a noticeable overhead.

Application

——— System calls

Sentry ~® . Gofer

Limited
system calls

System calls

Host Kernel

Hardware

Figure 1 gVisor Architecture

Kata containers have the same goal as gVisor, but instead of acting as a shim, the
kata runtime launches the container in a "lightweight" virtual machine'®. Kata's OCI-
compliant runtime is exposed through the containerd-shim-kata-v2 command line
tool. The runtime interacts with a hypervisor to launch a dedicated virtual machine for
each container. Because Kata launches a VM for each container, it can guarantee the
same level of isolation that VMs offer. The virtual machine images and hypervisors*! that
the Kata supports are highly optimized for containerized workloads. Still, it does incur a
performance penalty due to the added overhead. By default, it uses QEMU, a type 2
KVM hypervisor, but it also supports newer, container-optimized Virtual Machine
Monitors (VMM) such as Cloud Hypervisor and Firecracker. While a full analysis is out
of scope for this paper, Firecracker was specifically developed by AWS for their Lambda
and Fargate services to provide faster function execution and higher isolation via a

purpose-built hypervisor (Gupta & Lian, 2018).

2.2. Linux Kernel Security Modules
Linux Kernel Security Modules, or simply Linux Security Modules (LSMs), are

kernel modules loaded to enforce additional security controls on a system. The two most

10 https://github.com/kata-containers/kata-containers/tree/3.3.0/docs/design/architecture

1 https://github.com/kata-containers/kata-containers/blob/3.3.0/docs/hypervisors.md
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prevalent security modules are AppArmor and SELinux, which implement forms of
mandatory access control (MAC). On a standard Linux system, files and processes are
associated with a user, group, and a "mode" that determines the permissions given to the
owner, group, and any other users on the system*?. The "mode" is expressed as a three-
digit octal number where the first, second, and third digits correspond to the owner,
group, and 'others," respectively. Each number represents the permissions — read, write, or
execute — that can be given to the specific entity in that position. Each permission has a
numeric value of 1 (execute), 2 (write), or 4 (read). Adding them together can express
multiple permissions. For example, ‘read' and 'execute’ (1+4) would be 5. A complete

example of a real file might look like this:

—-rw-r—---- 1 root shadow 903 Mar 18 01:04 /etc/shadow
The permissions in octal would be 640, meaning the owner, root, can read and write to
/etc/shadow, any user belonging to the group shadow can read the file, and everyone
else would get permission denied. This system is known as Discretionary Access Control
(DAC), and it is a straightforward and robust framework for administrators to control

access to files and processes.

Mandatory Access Control adds an additional level of control by defining extra
rules — sometimes called policies — for valid interactions between a subject and an object
(Belim & Belim, 2018). LSMs implement this by processing additional rules and security
attributes attached to files, processes, and users to make more informed permission
decisions. AppArmor allows a 'profile’ to be applied to a running process. This profile
explicitly defines all the directories and files a process should be able to access. Because
the permissions are explicitly defined, even if a user could escape a running process, e.g.,
a container, they would still be confined by the rules specified in the profile, and their
access would remain limited. SELinux offers similar protections via security labels —
called contexts — applied to every file and process on the system. The context of a process
defines what it can and cannot access. For example, if a web server tried to read files that
belonged to a database, SELinux would automatically block the web server's attempts

unless a rule was added to allow the behavior. While these protections offered by LSMs

12 https://tldp.org/LDP/intro-linux/html/sect_03_04.html
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aren't as strong as the isolation of a virtual machine, they can still be an incredibly
effective security measure if properly applied.

2.3. eBPF

Extended Berkley Packet Filters (eBPF) is another technology inside the Linux
kernel that provides powerful networking, observability, and security features. BPF was
initially introduced as the "BSD Packet Filter" for the BSD operating system in 1992
(McCanne & Jacobson, 1993). It provided a way for users to efficiently capture and filter
network packets by implementing a BPF virtual machine within the kernel that could
execute user-provided instructions via an interpreter. This novel approach had two
benefits. First, it was highly efficient because it avoided the expensive operation of
copying every network packet to a user-space program and instead executed the
instructions directly in the kernel — only returning the packets matched by the filter. The

second benefit was the safety added by an additional layer of verification the BPF virtual
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Figure 2 BPF Performance Tools
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machine added. Before executing the user's instructions, the interpreter validates that the

instructions are valid and safe.

BPF, as it exists today, is nearly indistinguishable from its humble beginnings as a
simple packet filter. The technology has evolved into a general-purpose execution engine
that allows users to write programs that can monitor virtually every aspect of the Linux
operating system. The book "BPF Performance Tools: Linux System and Application
Observability" by Brendan Gregg highlights the multitude of monitoring tools now
powered by BPF (Gregg, 2019).

Despite its differences from "classic BPF" (the original implementation), eBPF
maintains the same performance and safety guarantees as its predecessor. These
guarantees are a large part of the success it has seen today. When faced with the choice of
implementing a kernel module or a BPF program, BPF is usually the much better choice.
Some of the most popular Kubernetes runtime security tools today are all powered by
eBPF: Tracee'?, Falco!4, and Tetragon®®. The way that these runtimes work is similar to
gVisor. However, instead of inserting a process between the container and the host that
intercepts system calls before they reach the kernel, the runtimes inject eBPF programs
directly into the kernel that monitor for specific events and syscalls. This leads to much
better performance with the added flexibility of being able to write custom rules similar
to the "profiles™ that LSMs use to deny or allow actions. Another benefit is the increased
visibility eBPF provides. Rather than intercepting and blocking certain actions, these
runtimes can feed events to external monitoring system which allows administrators to
collect details metrics, improve incident response, and proactively respond to unexpected

behaviors.

13 https://github.com/aquasecurity/tracee
14 https://github.com/falcosecurity/falco
15 https://github.com/cilium/tetragon
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3. Research Method

Each technology will be analyzed based on the isolation level it provides from the
infrastructure it runs within and the performance cost that isolation incurs. Generally
speaking, the higher the level of isolation, the higher the performance cost; however, due
to the diverse nature of workloads and various optimizations that exist, e.g., GPU-
optimized workloads may be less impacted by higher levels of isolation from the host
since the calculations are offloaded to the GPU and certain tasks may perform actions

that are more sensitive to network latency as opposed to system call bottlenecks.

A set of tests was chosen from the Phoronix Test Suite, a set of standardized

benchmarks covering CPU, memory, and 1/O intensive workloads.

3.1. Hardware and Software

The hardware selected for this test comprises four Turing RK1 Compute modules,
each with 16 GB of memory and an 8-core 64-bit ARM processor'®. The nodes will run a
v1.29.2 Kubernetes cluster, and scheduling will be configured so that only one pod can
run a node at a given time. Pods will be limited to consuming at most 4 CPU cores and 8

GB of memory. Each node is running the following software and versions:

Software Version

Host Operating System Ubuntu 22.04.4 LTS
Kernel 5.10.160-rockchip aarch64
AppArmor 3.0.4-2ubuntu2.3
containerd 1.7.13

runc 1.1.12

gVisor (runsc) release-20240311.0
kata-runtime 3.3.0
gemu-system-aarch64 7.2.0

Tetragon 1.0.3

16 https://docs.turingpi.com/docs/turing-rk1-specs-and-io-ports
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The testing and result collection will be orchestrated via the Phoronix Test Suite,

which is the tool developed by Phoronix Media to power OpenBenchmarking.org. The

Pronix Test Suite contains hundreds of open-source benchmarks that cover dozens of

different applications and performance tools. Leveraging an existing and widely deployed

benchmarking tool will help reduce the chances of introducing testing biases and provide

results that can be objectively compared against the millions of existing results hosted by

OpenBenchmarking.org. The following tests will be executed as part of the test suite for

this research:

Test

Parameters

pts/nginx-3.0.1
pts/redis-1.4.0

pts/unpack-linux-1.2.0
pts/compress-zstd-1.6.0

Luke Stigdon, contact@lukestigdon.com
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4. Findings and Discussion

4.1.1. NGINX Requests per Second

This test was performed with two configurations, one with 20 active connections
and another with 100. The goal was to measure the number of requests per second that a
nginx server could handle. A higher number of requests per second is desirable. This test
is primarily CPU-bound but involves lower-level system calls for establishing and
maintaining TCP connections. Immediately, the impacts on performance that running
containers within a sandbox become apparent. Figure 2 below, shows the average
number of requests per second the containers could handle. The requests per second were
not significantly impacted by the number of concurrent connections tested. Still, the
sandbox that the containers were running under caused a drastic change in the number of

connections.

Nginx (Reg/sec)
7,000
6,245 6,270 6,250 6,208
6,000
5,000
4,000
3,000
2,122 2,084
2,000
h = = I I
Baseline gVisor Tetragon Kata
m nginx - Connections: 20 (Regs/sec) m nginx - Connections: 100 (Regs/sec)

Figure 3 NGINX requests per second

Unfortunately for gVisor and Kata containers, the first test highlights their biggest
weakness, handling network connections. The drastic difference here is the overhead
added to the syscalls required for every request. In the case of the kata container, the
inefficiencies of running a network stack within a virtual machine have a big impact on
performance. Still, they are not nearly as large as the impact that gVisor imposes. gVisor

suffers from the overhead the Sentry adds by needing to intercept and translate the
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required syscalls for every request it handles. Tetragon performed similarly to a standard
container, which is to be expected since the underlying mechanism — an eBPF program —
is running directly inside the kernel. There does appear to be a slight drop in capacity for
the 100 reqg/sec test, but the difference is negligible.

4.1.2. Zstandard Compression

Zstandard (zstd) is an open-source lossless compression algorithm developed at
Facebook!’. It was created as a fast and efficient compression algorithm focusing on real-
time compression scenarios. This workload is CPU intensive and is an example of
something a sandboxed application might have to deal with regularly. For example, a
serverless function might be triggered to fetch compressed data from an object store.
Serverless functions are typically short-lived and billed by the amount of time they run.
They are also commonly executed within a sandbox to maintain security while achieving
scale in multi-tenant environments.

Zstd Compression (MB/sec)

800.00
725.35 710.55 727.05 716.38

700.00

600.00

500.00

400.00

300.00
223.60

200.00 176.60 162.23 178.28
0.00
Baseline gVisor Tetragon Kata

m Zstd Compression - Compression Level: 3 - Compression Speed (MB/s)

m Zstd Compression - Compression Level: 3 - Decompression Speed (MB/s)
Figure 4 Zstandard Compression Throughput
Compared to the previous NGINX example, the results between the containers

were practically indistinguishable. Kata containers even showed a slight improvement in

17 https://github.com/facebook/zstd
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compression speed. The cause of this improvement was unclear at the time of testing but
may have been related to the fact that the QEMU virtual machines launched by the kata-

runtime were using a more recent Linux kernel (6.1.62-126), which could have contained
patches and optimizations that the host kernel did not have.

4.1.3. Redis

Redis is an in-memory key-value store used by many applications. It is favored
for its speed and scalability, which enable it to handle millions of requests efficiently.
Even in this small test environment, the number of requests the benchmark tools were
able to generate was impressive. Unfortunately, this test highlighted the weakness of kata
containers and gVisor, which is similar to the NGINX benchmark.

Redis (Reqg/sec)

Baseline gVisor Tetragon Kata

1,600,000
1,400,000
1,200,000
1,000,000
800,000
600,000
400,000

200,000
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B Redis - Test: LPOP - Parallel Connections: 50 (Regs/sec) ® Redis - Test: SADD - Parallel Connections: 50 (Regs/sec)
M Redis - Test: LPUSH - Parallel Connections: 50 (Regs/sec)

Figure 5 Redis Requests per Second

gVisor took another large performance hit in this scenario due to the overhead
introduced by its syscall filtering. Interestingly, kata containers did not appear to take as
much of a performance hit. They performed marginally lower than the Baseline and
Tetragon benchmark runs but not as significantly as the NGINX benchmark. As was
mentioned previously, this is not something that would typically need to run in a sandbox
since Redis is a "trusted" application and doesn't run any arbitrary code, but it does
highlight the importance of understanding an organization's applications and testing for
its specific environment. It would have been easy to assume that Kata might have
suffered a similar penalty in this test based on the NGINX benchmark. However, this is
not the case.
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4.1.4. Unpacking the Linux Kernel

The final benchmark focused on filesystem performance. While extracting a large
tarball isn't a common occurrence, it is a good way to get a general idea of the
performance of a filesystem. The compressed source code for the Linux kernel is
hundreds of megabytes and contains thousands of files. Extracting those contents is a
quick way to identify file operation bottlenecks. This benchmark measures the amount of

time it takes (in seconds) to extract the source tarball, lower values are considered better.

Unpacking The Linux Kernel - linux-5.19.tar.xz (sec)
90.00 84.04
80.00
70.00

60.00

50.00

40.00 36.49

30.00

20.00 14.43 15.06

- L
0.00

Baseline gVisor Tetragon Kata

Figure 6 Unpacking the Linux Kernel

The results of this test were initially surprising. The benchmark runs with no
sandboxing and the runs with Tetragon performed similarly — and had the best
performance — but the gVisor and Kata runs showed that file operations were
significantly impacted. Kata containers also had a large variance between runs, with the
slowest taking 99 seconds and the fastest run still taking 66 seconds. None of the other
runtimes had such wide variances. Upon further investigation, the performance impact

seemed to derive from QEMU's implementation of shared host paths.
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To avoid any bottlenecks or testing complexities that an external storage provider
could introduce, the tests were performed in an emtpyDir!® volume, which mounts a
temporary directory from the host directly into the container. The directory on the host is
ephemeral, so the data does not persist when a pod restarts. However, there should not be
any filesystem overhead other than the overhead introduced by the sandbox.
Additionally, the ephemeral nature of the directory ensured that each test run had a clean
environment. Unfortunately, since kata containers are run inside a virtual machine the
way that QEMU and, by extension, the kata runtime mounts directories from the host into
the VM by setting up a virtual network and using the 9P network protocol to
communicate between the guest and the host. The 9P protocol is simple and effective but
has performance limitations exposed by this test. Switching to /tmp within the container
improved consistency and performance, but the average runtime was still 73 seconds,

which was considerably slower than even gVisor.

5. Recommendations and Implications

As this research has demonstrated, there are many factors to consider when
analyzing what solutions might work for your situation. It is also important to remember
that the solutions presented here are not a silver bullet and only represent individual
layers that should be included as part of a broader security strategy for an organization's
environment. Hardened runtimes such as gVisor and Kata Containers — while costly for
specific workloads — should be seriously considered in multi-tenant environments or
where high isolation levels are required. While the tests today exposed some of their
weaknesses, they have continued to improve over time and will only improve from now
on. For Kata Containers specifically, there was no time to delve into further
optimizations, but the runtime itself is highly configurable and can most likely fit many

workloads not addressed here.

One of the most promising developments discovered during the research for this

paper is the progress and capabilities shown by BPF. While hardened runtimes are

18 https://kubernetes.io/docs/concepts/storage/volumes#emptydir
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necessary in some scenarios, the added security and observability provided by BPF-based
runtime security tools are hard to overlook. They should be considered a standard

addition to any new environment. Tetragon specifically positioned itself as a complement
to existing LSMs and provides powerful capabilities that enable administrators to respond

proactively to emerging threats.

6. Conclusion

This paper has shown that there are many available tools to choose from when
administrators need to add additional layers of defense to their infrastructure. The
container runtime security landscape constantly evolves, and each new technology aims
to be better than the last but inevitably involves considering some trade-offs.
Nevertheless, this paper's examination found that because of that constant improvement,
developers and administrators should be able to find the right balance of security and
performance for their needs. Additionally, our research identified eBPF as a major area of
future growth and research. The observability, control, and performance offered by BPF
can allow an administrator to monitor and secure their infrastructure through a common
interface and allow them to react to emerging threats in a way that was not possible

previously.
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Appendix

Results
Baseline - Test Results by Node kube01 kube02 kube03 kube04 Average
Unpacking The Linux Kernel - linux-5.19.tar.xz (sec) 15.28 14.49 13.95 14.00 14.43
Zstd Compression - Compression Level: 3- Compression Speed (MB/s) 177.80 176.20 176.10 176.30 176.60
Zstd Compression - Compression Level: 3- Decompression Speed (MB/s) 721.30 715.40 724.90 739.80 725.35
Redis - Test: GET - Parallel Connections: 50 (Regs/sec) 1,347,345 1,325,022 1,367,589 1,370,072 1,352,507
Redis - Test: SET - Parallel Connections: 50 (Reqs/sec) 921,270 893,255 912,752 924,104 912,846
Redis - Test: LPOP - Parallel Connections: 50 (Reqs/sec) 1,315,050 1,313,340 1,324,483 1,345,346 1,324,555
Redis - Test: SADD - Parallel Connections: 50 (Reqs/sec) 1,115,189 1,122,310 1,122,221 1,157,980 1,129,425
Redis - Test: LPUSH - Parallel Connections: 50 (Regs/sec) 722,436 715,132 715,621 735,950 722,285
nginx - Connections: 20 (Regs/sec) 6,122 6,236 6,186 6,437 6,245
nginx - Connections: 100 (Reqs/sec) 6,080 6,359 6,174 6,467 6,270
gVisor - Test Results by Node kube01 kube02 kube03 kube04 Average
Unpacking The Linux Kernel - linux-5.19.tar.xz (sec) 36.01 39.07 33.66 37.22 36.49
Zstd Compression- Compression Level: 3- Compression Speed (MB/s) 159.80 162.40 161.20 165.50 162.23
Zstd Compression - Compression Level: 3- Decompression Speed (MB/s) 711.60 703.00 708.40 719.20 710.55
Redis - Test: GET - Parallel Connections: 50 (Regs/sec) 175,777 176,882 177,973 181,704 178,084
Redis - Test: SET - Parallel Connections: 50 (Reqs/sec) 140,218 137,737 141,552 140,361 139,967
Redis - Test: LPOP - Parallel Connections: 50 (Reqs/sec) 209,774 209,634 212,602 210,840 210,712
Redis - Test: SADD - Parallel Connections: 50 (Regs/sec) 137,785 136,588 140,729 137,868 138,242
Redis - Test: LPUSH - Parallel Connections: 50 (Regs/sec) 128,942 129,173 130,643 131,112 129,967
nginx - Connections: 20 (Reqs/sec) 502 497 500 502 500
nginx - Connections: 100 (Regs/sec) 515 514 511 525 516,
Tetragon - Test Results by Node kube01 kube02 kube03 kube04 Average
Unpacking The Linux Kernel - linux-5.19.tar.xz (sec) 15.98 16.19 13.94 14.12 15.06
Zstd Compression- Compression Level: 3- Compression Speed (MB/s) 179.00 176.30 177.80 180.00 178.28
Zstd Compression - Compression Level: 3- Decompression Speed (MB/s) 728.20 715.50 725.20 739.30 727.05
Redis - Test: GET - Parallel Connections: 50 (Reqs/sec) 1,335,899 1,313,252 1,363,654 1,358,134 1,342,735
Redis - Test: SET - Parallel Connections: 50 (Reqs/sec) 927,936 902,205 928,540 948,738 926,855
Redis - Test: LPOP - Parallel Connections: 50 (Regs/sec) 1,352,879 1,312,276 1,346,741 1,353,217 1,341,278
Redis - Test: SADD - Parallel Connections: 50 (Regs/sec) 1,127,551 1,109,052 1,130,203 1,148,415 1,128,805
Redis - Test: LPUSH - Parallel Connections: 50 (Reqs/sec) 713,028 723,020 714,703 726,849 719,400
nginx - Connections: 20 (Regs/sec) 6,189 6,227 6,156 6,426 6,250
nginx - Connections: 100 (Regs/sec) 6,141 6,303 6,098 6,289 6,208 ,
Kata Containers - Test Results by Node kube01 kube02 kube03 kube04 Average
Unpacking The Linux Kernel - linux-5.19.tar.xz (sec) 66.99 99.08 78.58 91.52 84.04
Unpacking The Linux Kernel - linux-5.19.tar.xz - virtio-fs (sec) 71.775 81.059 79.302 62.676 73.70
Zstd Compression - Compression Level: 3- Compression Speed (MB/s) 268.80 202.70 212.50 210.40 223.60
Zstd Compression - Compression Level: 3- Decompression Speed (MB/s) 718.10 704.70 717.00 725.70 716.38
Redis - Test: GET - Parallel Connections: 50 (Regs/sec) 1,180,419 1,212,683 1,226,434 1,243,539 1,215,769
Redis - Test: SET - Parallel Connections: 50 (Reqs/sec) 869,500 883,480 895,624 904,463 888,267
Redis - Test: LPOP - Parallel Connections: 50 (Regs/sec) 1,223,896 1,227,998 1,251,235 1,264,323 1,241,863
Redis - Test: SADD - Parallel Connections: 50 (Reqs/sec) 988,015 1,001,220 1,018,159 1,028,757 1,009,038
Redis - Test: LPUSH - Parallel Connections: 50 (Reqs/sec) 732,325 771,398 767,261 792,585 765,892
nginx - Connections: 20 (Regs/sec) 2,956 1,815 1,858 1,860 2,122
nginx - Connections: 100 (Reqs/sec) 2,905 1,735 1,830 1,865 2,084
Test Result Averages Grouped by Sandbox Baseline gVisor Tetragon Kata
Unpacking The Linux Kernel - linux-5.19.tar.xz (sec) 14.43 36.49 15.06 84.04
Zstd Compression- Compression Level: 3- Compression Speed (MB/s) 176.60 162.23 178.28 223.60
Zstd Compression - Compression Level: 3- Decompression Speed (MB/s) 725.35 710.55 727.05 716.38
Redis - Test: GET - Parallel Connections: 50 (Reqs/sec) 1,352,507 178,084 1,342,735 1,215,769
Redis - Test: SET - Parallel Connections: 50 (Reqs/sec) 912,846 139,967 926,855 888,267
Redis - Test: LPOP - Parallel Connections: 50 (Reqs/sec) 1,324,555 210,712 1,341,278 1,241,863
Redis - Test: SADD - Parallel Connections: 50 (Regs/sec) 1,129,425 138,242 1,128,805 1,009,038
Redis - Test: LPUSH - Parallel Connections: 50 (Reqs/sec) 722,285 129,967 719,400 765,892
nginx - Connections: 20 (Regs/sec) 6,245 500 6,250 2,122
nginx - Connections: 100 (Reqs/sec) 6,270 516 6,208 2,084
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