
For Juliet and Ellie,
Zachary and Elizabeth,

Henry and Stuart

Table of Contents

1. Foreword

2. Preface to the Second Edition

1. How the Book Is Organized

2. What’s in a Name?

3. Source Code and Other Resources

4. Send Us Feedback

5. Second Edition Acknowledgments

3. From the Preface to the First Edition

1. Who Should Read This Book?

2. What Makes a Pragmatic Programmer?

3. Individual Pragmatists, Large Teams

4. It’s a Continuous Process

4. 1. A Pragmatic Philosophy

1. Topic 1. It’s Your Life

2. Topic 2. The Cat Ate My Source Code

3. Topic 3. Software Entropy

4. Topic 4. Stone Soup and Boiled Frogs

5. Topic 5. Good-Enough Software

6. Topic 6. Your Knowledge Portfolio

7. Topic 7. Communicate!

5. 2. A Pragmatic Approach

1. Topic 8. The Essence of Good Design

2. Topic 9. DRY—The Evils of Duplication

3. Topic 10. Orthogonality

4. Topic 11. Reversibility

5. Topic 12. Tracer Bullets

6. Topic 13. Prototypes and Post-it Notes

7. Topic 14. Domain Languages

8. Topic 15. Estimating

6. 3. The Basic Tools

1. Topic 16. The Power of Plain Text

2. Topic 17. Shell Games

3. Topic 18. Power Editing

4. Topic 19. Version Control

5. Topic 20. Debugging

6. Topic 21. Text Manipulation

7. Topic 22. Engineering Daybooks

7. 4. Pragmatic Paranoia

1. Topic 23. Design by Contract

2. Topic 24. Dead Programs Tell No Lies

3. Topic 25. Assertive Programming

4. Topic 26. How to Balance Resources

5. Topic 27. Don’t Outrun Your Headlights

8. 5. Bend, or Break

1. Topic 28. Decoupling

2. Topic 29. Juggling the Real World

3. Topic 30. Transforming Programming

4. Topic 31. Inheritance Tax

5. Topic 32. Configuration

9. 6. Concurrency

1. Topic 33. Breaking Temporal Coupling

2. Topic 34. Shared State Is Incorrect State

3. Topic 35. Actors and Processes

4. Topic 36. Blackboards

10. 7. While You Are Coding

1. Topic 37. Listen to Your Lizard Brain

2. Topic 38. Programming by Coincidence

3. Topic 39. Algorithm Speed

4. Topic 40. Refactoring

5. Topic 41. Test to Code

6. Topic 42. Property-Based Testing

7. Topic 43. Stay Safe Out There

8. Topic 44. Naming Things

11. 8. Before the Project

1. Topic 45. The Requirements Pit

2. Topic 46. Solving Impossible Puzzles

3. Topic 47. Working Together

4. Topic 48. The Essence of Agility

12. 9. Pragmatic Projects

1. Topic 49. Pragmatic Teams

2. Topic 50. Coconuts Don’t Cut It

3. Topic 51. Pragmatic Starter Kit

4. Topic 52. Delight Your Users

5. Topic 53. Pride and Prejudice

13. 10. Postface

14. A1. Bibliography

15. A2. Possible Answers to the Exercises

Copyright © 2020 Pearson Education, Inc.

Praise for the second edition of
The Pragmatic Programmer

Some say that with The Pragmatic Programmer, Andy and
Dave captured lightning in a bottle; that it’s unlikely anyone
will soon write a book that can move an entire industry as it
did. Sometimes, though, lightning does strike twice, and this
book is proof. The updated content ensures that it will stay
at the top of “best books in software development” lists for
another 20 years, right where it belongs.

—
 VM (Vicky) Brasseur

Director of Open Source Strategy, Juniper Networks

If you want your software to be easy to modernize and
maintain, keep a copy of The Pragmatic Programmer close.
It’s filled with practical advice, both technical and
professional, that will serve you and your projects well for
years to come.

—
 Andrea Goulet

CEO, Corgibytes; Founder, LegacyCode.Rocks

The Pragmatic Programmer is the one book I can point to
that completely dislodged the existing trajectory of my
career in software and pointed me in the direction of
success. Reading it opened my mind to the possibilities of
being a craftsman, not just a cog in a big machine. One of
the most significant books in my life.

—
 Obie Fernandez

Author, The Rails Way

First-time readers can look forward to an enthralling
induction into the modern world of software practice, a
world that the first edition played a major role in shaping.
Readers of the first edition will rediscover here the insights
and practical wisdom that made the book so significant in
the first place, expertly curated and updated, along with
much that’s new.

—
 David A. Black

Author, The Well-Grounded Rubyist

I have an old paper copy of the original Pragmatic
Programmer on my bookshelf. It has been read and re-read
and a long time ago it changed everything about how I
approached my job as a programmer. In the new edition
everything and nothing has changed: I now read it on my
iPad and the code examples use modern programming

languages—but the underlying concepts, ideas, and attitudes
are timeless and universally applicable. Twenty years later,
the book is as relevant as ever. It makes me happy to know
that current and future developers will have the same
opportunity to learn from Andy and Dave’s profound
insights as I did back in the day.

—
 Sandy Mamoli

Agile coach, author of How Self-Selection Lets People Excel

Twenty years ago, the first edition of The Pragmatic
Programmer completely changed the trajectory of my
career. This new edition could do the same for yours.

—
 Mike Cohn

Author of Succeeding with Agile,
 Agile Estimating and Planning, and
 User Stories Applied

Foreword

I remember when Dave and Andy first tweeted about the new
edition of this book. It was big news. I watched as the coding
community responded with excitement. My feed buzzed with
anticipation. After twenty years, The Pragmatic Programmer is
just as relevant today as it was back then.

It says a lot that a book with such history had such a reaction. I
had the privilege of reading an unreleased copy to write this
foreword, and I understood why it created such a stir. While it’s
a technical book, calling it that does it a disservice. Technical
books often intimidate. They’re stuffed with big words, obscure
terms, convoluted examples that, unintentionally, make you feel
stupid. The more experienced the author, the easier it is to
forget what it’s like to learn new concepts, to be a beginner.

Despite their decades of programming experience, Dave and
Andy have conquered the difficult challenge of writing with the
same excitement of people who’ve just learned these lessons.
They don’t talk down to you. They don’t assume you are an
expert. They don’t even assume you’ve read the first edition.
They take you as you are—programmers who just want to be
better. They spend the pages of this book helping you get there,
one actionable step at a time.

To be fair, they’d already done this before. The original release
was full of tangible examples, new ideas, and practical tips to
build your coding muscles and develop your coding brain that
still apply today. But this updated edition makes two
improvements on the book.

The first is the obvious one: it removes some of the older
references, the out-of-date examples, and replaces them with
fresh, modern content. You won’t find examples of loop
invariants or build machines. Dave and Andy have taken their
powerful content and made sure the lessons still come through,
free of the distractions of old examples. It dusts off old ideas like
DRY (don’t repeat yourself) and gives them a fresh coat of paint,
really making them shine.

But the second is what makes this release truly exciting. After
writing the first edition, they had the chance to reflect on what
they were trying to say, what they wanted their readers to take
away, and how it was being received. They got feedback on
those lessons. They saw what stuck, what needed refining, what
was misunderstood. In the twenty years that this book has made
its way through the hands and hearts of programmers all over
the world, Dave and Andy have studied this response and
formulated new ideas, new concepts.

They’ve learned the importance of agency and recognized that
developers have arguably more agency than most other
professionals. They start this book with the simple but profound
message: “it’s your life.” It reminds us of our own power in our
code base, in our jobs, in our careers. It sets the tone for
everything else in the book—that it’s more than just another
technical book filled with code examples.

What makes it truly stand out among the shelves of technical
books is that it understands what it means to be a programmer.
Programming is about trying to make the future less painful. It’s
about making things easier for our teammates. It’s about getting
things wrong and being able to bounce back. It’s about forming
good habits. It’s about understanding your toolset. Coding is
just part of the world of being a programmer, and this book
explores that world.

I spend a lot of time thinking about the coding journey. I didn’t
grow up coding; I didn’t study it in college. I didn’t spend my
teenage years tinkering with tech. I entered the coding world in
my mid-twenties and had to learn what it meant to be a
programmer. This community is very different from others I’d
been a part of. There is a unique dedication to learning and
practicality that is both refreshing and intimidating.

For me, it really does feel like entering a new world. A new
town, at least. I had to get to know the neighbors, pick my
grocery store, find the best coffee shops. It took a while to get
the lay of the land, to find the most efficient routes, to avoid the
streets with the heaviest traffic, to know when traffic was likely
to hit. The weather is different, I needed a new wardrobe.

The first few weeks, even months, in a new town can be scary.
Wouldn’t it be wonderful to have a friendly, knowledgeable
neighbor who’d been living there a while? Who can give you a
tour, show you those coffee shops? Someone who’d been there
long enough to know the culture, understand the pulse of the
town, so you not only feel at home, but become a contributing
member as well? Dave and Andy are those neighbors.

As a relative newcomer, it’s easy to be overwhelmed not by the

act of programming but the process of becoming a programmer.
There is an entire mindset shift that needs to happen—a change
in habits, behaviors, and expectations. The process of becoming
a better programmer doesn’t just happen because you know
how to code; it must be met with intention and deliberate
practice. This book is a guide to becoming a better programmer
efficiently.

But make no mistake—it doesn’t tell you how programming
should be. It’s not philosophical or judgmental in that way. It
tells you, plain and simple, what a Pragmatic Programmer is—
how they operate, and how they approach code. They leave it up
to you to decide if you want to be one. If you feel it’s not for you,
they won’t hold it against you. But if you decide it is, they’re
your friendly neighbors, there to show you the way.

▶ Saron Yitbarek

 Founder & CEO of CodeNewbie

 Host of Command Line Heroes

Copyright © 2020 Pearson Education, Inc.

Preface to the Second Edition

Back in the 1990s, we worked with companies whose projects
were having problems. We found ourselves saying the same
things to each: maybe you should test that before you ship it;
why does the code only build on Mary’s machine? Why didn’t
anyone ask the users?

To save time with new clients, we started jotting down notes.
And those notes became The Pragmatic Programmer. To our
surprise the book seemed to strike a chord, and it has continued
to be popular these last 20 years.

But 20 years is many lifetimes in terms of software. Take a
developer from 1999 and drop them into a team today, and
they’d struggle in this strange new world. But the world of the
1990s is equally foreign to today’s developer. The book’s
references to things such as CORBA, CASE tools, and indexed
loops were at best quaint and more likely confusing.

At the same time, 20 years has had no impact whatsoever on
common sense. Technology may have changed, but people
haven’t. Practices and approaches that were a good idea then
remain a good idea now. Those aspects of the book aged well.

So when it came time to create this 20 Anniversary Edition,th

we had to make a decision. We could go through and update the
technologies we reference and call it a day. Or we could
reexamine the assumptions behind the practices we
recommended in the light of an additional two decades’ worth
of experience.

In the end, we did both.

As a result, this book is something of a Ship of Theseus.
Roughly one-third of the topics in the book are brand new. Of
the rest, the majority have been rewritten, either partially or
totally. Our intent was to make things clearer, more relevant,
and hopefully somewhat timeless.

We made some difficult decisions. We dropped the Resources
appendix, both because it would be impossible to keep up-to-
date and because it’s easier to search for what you want. We
reorganized and rewrote topics to do with concurrency, given
the current abundance of parallel hardware and the dearth of
good ways of dealing with it. We added content to reflect
changing attitudes and environments, from the agile movement
which we helped launch, to the rising acceptance of functional
programming idioms and the growing need to consider privacy
and security.

Interestingly, though, there was considerably less debate
between us on the content of this edition than there was when
we wrote the first. We both felt that the stuff that was important
was easier to identify.

Anyway, this book is the result. Please enjoy it. Maybe adopt
some new practices. Maybe decide that some of the stuff we
suggest is wrong. Get involved in your craft. Give us feedback.

[1]

But, most important, remember to make it fun.

How the Book Is Organized
This book is written as a collection of short topics. Each topic is
self-contained, and addresses a particular theme. You’ll find
numerous cross references, which help put each topic in
context. Feel free to read the topics in any order—this isn’t a
book you need to read front-to-back.

Occasionally you’ll come across a box labeled Tip nn (such as
Tip 1, Care About Your Craft). As well as emphasizing points in
the text, we feel the tips have a life of their own—we live by
them daily. You’ll find a summary of all the tips on a pull-out
card inside the back cover.

We’ve included exercises and challenges where appropriate.
Exercises normally have relatively straightforward answers,
while the challenges are more open-ended. To give you an idea
of our thinking, we’ve included our answers to the exercises in
an appendix, but very few have a single correct solution. The
challenges might form the basis of group discussions or essay
work in advanced programming courses.

There’s also a short bibliography listing the books and articles
we explicitly reference.

What’s in a Name?
Scattered throughout the book you’ll find various bits of jargon
—either perfectly good English words that have been corrupted
to mean something technical, or horrendous made-up words
that have been assigned meanings by computer scientists with a
grudge against the language. The first time we use each of these
jargon words, we try to define it, or at least give a hint to its
meaning. However, we’re sure that some have fallen through
the cracks, and others, such as object and relational database,
are in common enough usage that adding a definition would be
boring. If you do come across a term you haven’t seen before,
please don’t just skip over it. Take time to look it up, perhaps on
the web, or maybe in a computer science textbook. And, if you
get a chance, drop us an email and complain, so we can add a
definition to the next edition.

Having said all this, we decided to get revenge against the
computer scientists. Sometimes, there are perfectly good jargon
words for concepts, words that we’ve decided to ignore. Why?
Because the existing jargon is normally restricted to a particular
problem domain, or to a particular phase of development.
However, one of the basic philosophies of this book is that most
of the techniques we’re recommending are universal:
modularity applies to code, designs, documentation, and team
organization, for instance. When we wanted to use the
conventional jargon word in a broader context, it got confusing
—we couldn’t seem to overcome the baggage the original term
brought with it. When this happened, we contributed to the
decline of the language by inventing our own terms.

Source Code and Other Resources
Most of the code shown in this book is extracted from
compilable source files, available for download from our
website.

There you’ll also find links to resources we find useful, along
with updates to the book and news of other Pragmatic
Programmer developments.

[2]

Send Us Feedback
We’d appreciate hearing from you. Email us at
ppbook@pragprog.com.

Second Edition Acknowledgments
We have enjoyed literally thousands of interesting
conversations about programming over the last 20 years,
meeting people at conferences, at courses, and sometimes even
on the plane. Each one of these has added to our understanding
of the development process, and has contributed to the updates
in this edition. Thank you all (and keep telling us when we’re
wrong).

Thanks to the participants in the book’s beta process. Your
questions and comments helped us explain things better.

Before we went beta, we shared the book with a few folks for
comments. Thanks to VM (Vicky) Brasseur, Jeff Langr, and Kim
Shrier for your detailed comments, and to José Valim and Nick
Cuthbert for your technical reviews.

Thanks to Ron Jeffries for letting us use the Sudoku example.

Much gratitude to the folks at Pearson who agreed to let us
create this book our way.

A special thanks to the indispensable Janet Furlow, who
masters whatever she takes on and keeps us in line.

And, finally, a shout out to all the Pragmatic Programmers out
there who have been making programming better for everyone
for the last twenty years. Here’s to twenty more.

Footnotes

Copyright © 2020 Pearson Education, Inc.

[1]

[2]

If, over the years, every component of a ship is replaced as it fails, is the resulting vessel
the same ship?

https://pragprog.com/titles/tpp20

From the Preface to the First
Edition

This book will help you become a better programmer.

You could be a lone developer, a member of a large project
team, or a consultant working with many clients at once. It
doesn’t matter; this book will help you, as an individual, to do
better work. This book isn’t theoretical—we concentrate on
practical topics, on using your experience to make more
informed decisions. The word pragmatic comes from the Latin
pragmaticus—“skilled in business”—which in turn is derived
from the Greek πραγματικός, meaning “fit for use.”

This is a book about doing.

Programming is a craft. At its simplest, it comes down to getting
a computer to do what you want it to do (or what your user
wants it to do). As a programmer, you are part listener, part
advisor, part interpreter, and part dictator. You try to capture
elusive requirements and find a way of expressing them so that
a mere machine can do them justice. You try to document your
work so that others can understand it, and you try to engineer
your work so that others can build on it. What’s more, you try to
do all this against the relentless ticking of the project clock. You

work small miracles every day.

It’s a difficult job.

There are many people offering you help. Tool vendors tout the
miracles their products perform. Methodology gurus promise
that their techniques guarantee results. Everyone claims that
their programming language is the best, and every operating
system is the answer to all conceivable ills.

Of course, none of this is true. There are no easy answers. There
is no best solution, be it a tool, a language, or an operating
system. There can only be systems that are more appropriate in
a particular set of circumstances.

This is where pragmatism comes in. You shouldn’t be wedded to
any particular technology, but have a broad enough background
and experience base to allow you to choose good solutions in
particular situations. Your background stems from an
understanding of the basic principles of computer science, and
your experience comes from a wide range of practical projects.
Theory and practice combine to make you strong.

You adjust your approach to suit the current circumstances and
environment. You judge the relative importance of all the
factors affecting a project and use your experience to produce
appropriate solutions. And you do this continuously as the work
progresses. Pragmatic Programmers get the job done, and do it
well.

Who Should Read This Book?
This book is aimed at people who want to become more effective
and more productive programmers. Perhaps you feel frustrated
that you don’t seem to be achieving your potential. Perhaps you
look at colleagues who seem to be using tools to make
themselves more productive than you. Maybe your current job
uses older technologies, and you want to know how newer ideas
can be applied to what you do.

We don’t pretend to have all (or even most) of the answers, nor
are all of our ideas applicable in all situations. All we can say is
that if you follow our approach, you’ll gain experience rapidly,
your productivity will increase, and you’ll have a better
understanding of the entire development process. And you’ll
write better software.

What Makes a Pragmatic Programmer?
Each developer is unique, with individual strengths and
weaknesses, preferences and dislikes. Over time, each will craft
their own personal environment. That environment will reflect
the programmer’s individuality just as forcefully as his or her
hobbies, clothing, or haircut. However, if you’re a Pragmatic
Programmer, you’ll share many of the following characteristics:

Early adopter/fast adapter
You have an instinct for technologies and techniques, and
you love trying things out. When given something new,
you can grasp it quickly and integrate it with the rest of
your knowledge. Your confidence is born of experience.

Inquisitive
You tend to ask questions. That’s neat—how did you do
that? Did you have problems with that library? What’s
this quantum computing I’ve heard about? How are
symbolic links implemented? You are a pack rat for little
facts, each of which may affect some decision years from
now.

Critical thinker
You rarely take things as given without first getting the
facts. When colleagues say “because that’s the way it’s
done,” or a vendor promises the solution to all your
problems, you smell a challenge.

Realistic
You try to understand the underlying nature of each
problem you face. This realism gives you a good feel for

how difficult things are, and how long things will take.
Deeply understanding that a process should be difficult
or will take a while to complete gives you the stamina to
keep at it.

Jack of all trades
You try hard to be familiar with a broad range of
technologies and environments, and you work to keep
abreast of new developments. Although your current job
may require you to be a specialist, you will always be able
to move on to new areas and new challenges.

We’ve left the most basic characteristics until last. All Pragmatic
Programmers share them. They’re basic enough to state as tips:

Tip 1 Care About Your Craft

We feel that there is no point in developing software unless you
care about doing it well.

Tip 2 Think! About Your Work

In order to be a Pragmatic Programmer, we’re challenging you
to think about what you’re doing while you’re doing it. This isn’t
a one-time audit of current practices—it’s an ongoing critical
appraisal of every decision you make, every day, and on every
project. Never run on auto-pilot. Constantly be thinking,
critiquing your work in real time. The old IBM corporate motto,
THINK!, is the Pragmatic Programmer’s mantra.

If this sounds like hard work to you, then you’re exhibiting the
realistic characteristic. This is going to take up some of your

valuable time—time that is probably already under tremendous
pressure. The reward is a more active involvement with a job
you love, a feeling of mastery over an increasing range of
subjects, and pleasure in a feeling of continuous improvement.
Over the long term, your time investment will be repaid as you
and your team become more efficient, write code that’s easier to
maintain, and spend less time in meetings.

Individual Pragmatists, Large Teams
Some people feel that there is no room for individuality on large
teams or complex projects. “Software is an engineering
discipline,” they say, “that breaks down if individual team
members make decisions for themselves.”

We strongly disagree.

There should be engineering in software construction. However,
this doesn’t preclude individual craftsmanship. Think about the
large cathedrals built in Europe during the Middle Ages. Each
took thousands of person-years of effort, spread over many
decades. Lessons learned were passed down to the next set of
builders, who advanced the state of structural engineering with
their accomplishments. But the carpenters, stonecutters,
carvers, and glass workers were all craftspeople, interpreting
the engineering requirements to produce a whole that
transcended the purely mechanical side of the construction. It
was their belief in their individual contributions that sustained
the projects: We who cut mere stones must always be
envisioning cathedrals.

Within the overall structure of a project there is always room for
individuality and craftsmanship. This is particularly true given
the current state of software engineering. One hundred years
from now, our engineering may seem as archaic as the
techniques used by medieval cathedral builders seem to today’s
civil engineers, while our craftsmanship will still be honored.

It’s a Continuous Process
A tourist visiting England’s Eton College asked the gardener
how he got the lawns so perfect. “That’s easy,” he replied, “You
just brush off the dew every morning, mow them every other
day, and roll them once a week.”

“Is that all?” asked the tourist. “Absolutely,” replied the
gardener. “Do that for 500 years and you’ll have a nice lawn,
too.”

Great lawns need small amounts of daily care, and so do great
programmers. Management consultants like to drop the word
kaizen in conversations. “Kaizen” is a Japanese term that
captures the concept of continuously making many small
improvements. It was considered to be one of the main reasons
for the dramatic gains in productivity and quality in Japanese
manufacturing and was widely copied throughout the world.
Kaizen applies to individuals, too. Every day, work to refine the
skills you have and to add new tools to your repertoire. Unlike
the Eton lawns, you’ll start seeing results in a matter of days.
Over the years, you’ll be amazed at how your experience has
blossomed and how your skills have grown.

Copyright © 2020 Pearson Education, Inc.

Chapter 1

A Pragmatic Philosophy

This book is about you.

Make no mistake, it is your career, and more importantly, Topic
1, It’s Your Life. You own it. You’re here because you know you
can become a better developer and help others become better as
well. You can become a Pragmatic Programmer.

What distinguishes Pragmatic Programmers? We feel it’s an
attitude, a style, a philosophy of approaching problems and
their solutions. They think beyond the immediate problem,
placing it in its larger context and seeking out the bigger picture.
After all, without this larger context, how can you be pragmatic?
How can you make intelligent compromises and informed
decisions?

Another key to their success is that Pragmatic Programmers
take responsibility for everything they do, which we discuss in
Topic 2, The Cat Ate My Source Code. Being responsible,
Pragmatic Programmers won’t sit idly by and watch their
projects fall apart through neglect. In Topic 3, Software
Entropy, we tell you how to keep your projects pristine.

Most people find change difficult, sometimes for good reasons,

sometimes because of plain old inertia. In Topic 4, Stone Soup
and Boiled Frogs, we look at a strategy for instigating change
and (in the interests of balance) present the cautionary tale of
an amphibian that ignored the dangers of gradual change.

One of the benefits of understanding the context in which you
work is that it becomes easier to know just how good your
software has to be. Sometimes near-perfection is the only
option, but often there are trade-offs involved. We explore this
in Topic 5, Good-Enough Software.

Of course, you need to have a broad base of knowledge and
experience to pull all of this off. Learning is a continuous and
ongoing process. In Topic 6, Your Knowledge Portfolio, we
discuss some strategies for keeping the momentum up.

Finally, none of us works in a vacuum. We all spend a large
amount of time interacting with others. Topic 7, Communicate!
lists ways we can do this better.

Pragmatic programming stems from a philosophy of pragmatic
thinking. This chapter sets the basis for that philosophy.

I’m not in this world to
live up to your
expectations and
you’re not in this world
to live up to mine.

Bruce Lee

Topic 1 It’s Your Life

It is your life. You own it. You run
it. You create it.

Many developers we talk to are
frustrated. Their concerns are
varied. Some feel they’re
stagnating in their job, others that
technology has passed them by.
Folks feel they are under
appreciated, or underpaid, or that
their teams are toxic. Maybe they

want to move to Asia, or Europe, or work from home.

And the answer we give is always the same.

“Why can’t you change it?”

Software development must appear close to the top of any list of
careers where you have control. Our skills are in demand, our
knowledge crosses geographic boundaries, we can work
remotely. We’re paid well. We really can do just about anything
we want.

But, for some reason, developers seem to resist change. They
hunker down, and hope things will get better. They look on,
passively, as their skills become dated and complain that their
companies don’t train them. They look at ads for exotic
locations on the bus, then step off into the chilling rain and

trudge into work.

So here’s the most important tip in the book.

Tip 3 You Have Agency

Does your work environment suck? Is your job boring? Try to
fix it. But don’t try forever. As Martin Fowler says, “you can
change your organization or change your organization.”

If technology seems to be passing you by, make time (in your
own time) to study new stuff that looks interesting. You’re
investing in yourself, so doing it while you’re off-the-clock is
only reasonable.

Want to work remotely? Have you asked? If they say no, then
find someone who says yes.

This industry gives you a remarkable set of opportunities. Be
proactive, and take them.

RELATED SECTIONS INCLUDE

Topic 4, Stone Soup and Boiled Frogs

Topic 6, Your Knowledge Portfolio

[3]

The greatest of all
weaknesses is the fear
of appearing weak.

J.B. Bossuet, Politics from
Holy Writ, 1709

Topic 2 The Cat Ate My Source Code

One of the cornerstones of the
pragmatic philosophy is the idea of
taking responsibility for yourself
and your actions in terms of your
career advancement, your learning
and education, your project, and
your day-to-day work. Pragmatic
Programmers take charge of their
own career, and aren’t afraid to

admit ignorance or error. It’s not the most pleasant aspect of
programming, to be sure, but it will happen—even on the best of
projects. Despite thorough testing, good documentation, and
solid automation, things go wrong. Deliveries are late.
Unforeseen technical problems come up.

These things happen, and we try to deal with them as
professionally as we can. This means being honest and direct.
We can be proud of our abilities, but we must own up to our
shortcomings—our ignorance and our mistakes.

TEAM TRUST

Above all, your team needs to be able to trust and rely on you—
and you need to be comfortable relying on each of them as well.
Trust in a team is absolutely essential for creativity and
collaboration according to the research literature. In a healthy
environment based in trust, you can safely speak your mind,
present your ideas, and rely on your team members who can in

[4]

turn rely on you. Without trust, well…

Imagine a high-tech, stealth ninja team infiltrating the villain’s
evil lair. After months of planning and delicate execution, you’ve
made it on site. Now it’s your turn to set up the laser guidance
grid: “Sorry, folks, I don’t have the laser. The cat was playing
with the red dot and I left it at home.”

That sort of breach of trust might be hard to repair.

TAKE RESPONSIBILITY

Responsibility is something you actively agree to. You make a
commitment to ensure that something is done right, but you
don’t necessarily have direct control over every aspect of it. In
addition to doing your own personal best, you must analyze the
situation for risks that are beyond your control. You have the
right not to take on a responsibility for an impossible situation,
or one in which the risks are too great, or the ethical
implications too sketchy. You’ll have to make the call based on
your own values and judgment.

When you do accept the responsibility for an outcome, you
should expect to be held accountable for it. When you make a
mistake (as we all do) or an error in judgment, admit it honestly
and try to offer options.

Don’t blame someone or something else, or make up an excuse.
Don’t blame all the problems on a vendor, a programming
language, management, or your coworkers. Any and all of these
may play a role, but it is up to you to provide solutions, not
excuses.

If there was a risk that the vendor wouldn’t come through for

you, then you should have had a contingency plan. If your mass
storage melts—taking all of your source code with it—and you
don’t have a backup, it’s your fault. Telling your boss “the cat ate
my source code’’ just won’t cut it.

Tip 4 Provide Options, Don’t Make Lame Excuses

Before you approach anyone to tell them why something can’t
be done, is late, or is broken, stop and listen to yourself. Talk to
the rubber duck on your monitor, or the cat. Does your excuse
sound reasonable, or stupid? How’s it going to sound to your
boss?

Run through the conversation in your mind. What is the other
person likely to say? Will they ask, “Have you tried this…” or
“Didn’t you consider that?” How will you respond? Before you
go and tell them the bad news, is there anything else you can
try? Sometimes, you just know what they are going to say, so
save them the trouble.

Instead of excuses, provide options. Don’t say it can’t be done;
explain what can be done to salvage the situation. Does code
have to be deleted? Tell them so, and explain the value of
refactoring (see Topic 40, Refactoring).

Do you need to spend time prototyping to determine the best
way to proceed (see Topic 13, Prototypes and Post-it Notes)? Do
you need to introduce better testing (see Topic 41, Test to Code,
and Ruthless and Continuous Testing) or automation to prevent
it from happening again?

Perhaps you need additional resources to complete this task. Or

maybe you need to spend more time with the users? Or maybe
it’s just you: do you need to learn some technique or technology
in greater depth? Would a book or a course help? Don’t be
afraid to ask, or to admit that you need help.

Try to flush out the lame excuses before voicing them aloud. If
you must, tell your cat first. After all, if little Tiddles is going to
take the blame….

RELATED SECTIONS INCLUDE

Topic 49, Pragmatic Teams

CHALLENGES

How do you react when someone—such as a bank teller, an auto
mechanic, or a clerk—comes to you with a lame excuse? What do
you think of them and their company as a result?

When you find yourself saying, “I don’t know,” be sure to follow it
up with “—but I’ll find out.” It’s a great way to admit what you don’t
know, but then take responsibility like a pro.

Topic 3 Software Entropy

While software development is immune from almost all physical
laws, the inexorable increase in entropy hits us hard. Entropy is
a term from physics that refers to the amount of “disorder” in a
system. Unfortunately, the laws of thermodynamics guarantee
that the entropy in the universe tends toward a maximum.
When disorder increases in software, we call it “software rot.”
Some folks might call it by the more optimistic term, “technical
debt,” with the implied notion that they’ll pay it back someday.
They probably won’t.

Whatever the name, though, both debt and rot can spread
uncontrollably.

There are many factors that can contribute to software rot. The
most important one seems to be the psychology, or culture, at
work on a project. Even if you are a team of one, your project’s
psychology can be a very delicate thing. Despite the best-laid
plans and the best people, a project can still experience ruin and
decay during its lifetime. Yet there are other projects that,
despite enormous difficulties and constant setbacks,
successfully fight nature’s tendency toward disorder and
manage to come out pretty well.

What makes the difference?

In inner cities, some buildings are beautiful and clean, while
others are rotting hulks. Why? Researchers in the field of crime

and urban decay discovered a fascinating trigger mechanism,
one that very quickly turns a clean, intact, inhabited building
into a smashed and abandoned derelict.

A broken window.

One broken window, left unrepaired for any substantial length
of time, instills in the inhabitants of the building a sense of
abandonment—a sense that the powers that be don’t care about
the building. So another window gets broken. People start
littering. Graffiti appears. Serious structural damage begins. In
a relatively short span of time, the building becomes damaged
beyond the owner’s desire to fix it, and the sense of
abandonment becomes reality.

Why would that make a difference? Psychologists have done
studies that show hopelessness can be contagious. Think of
the flu virus in close quarters. Ignoring a clearly broken
situation reinforces the ideas that perhaps nothing can be fixed,
that no one cares, all is doomed; all negative thoughts which can
spread among team members, creating a vicious spiral.

Tip 5 Don’t Live with Broken Windows

Don’t leave “broken windows’’ (bad designs, wrong decisions, or
poor code) unrepaired. Fix each one as soon as it is discovered.
If there is insufficient time to fix it properly, then board it up.
Perhaps you can comment out the offending code, or display a
“Not Implemented” message, or substitute dummy data instead.
Take some action to prevent further damage and to show that
you’re on top of the situation.

[5]

[6]

We’ve seen clean, functional systems deteriorate pretty quickly
once windows start breaking. There are other factors that can
contribute to software rot, and we’ll touch on some of them
elsewhere, but neglect accelerates the rot faster than any other
factor.

You may be thinking that no one has the time to go around
cleaning up all the broken glass of a project. If so, then you’d
better plan on getting a dumpster, or moving to another
neighborhood. Don’t let entropy win.

FIRST, DO NO HARM

Andy once had an acquaintance who was obscenely rich. His
house was immaculate, loaded with priceless antiques, objets
d’art, and so on. One day, a tapestry that was hanging a little too
close to a fireplace caught on fire. The fire department rushed in
to save the day—and his house. But before they dragged their
big, dirty hoses into the house, they stopped—with the fire
raging—to roll out a mat between the front door and the source
of the fire.

They didn’t want to mess up the carpet.

Now that sounds pretty extreme. Surely the fire department’s
first priority is to put out the fire, collateral damage be damned.
But they clearly had assessed the situation, were confident of
their ability to manage the fire, and were careful not to inflict
unnecessary damage to the property. That’s the way it must be
with software: don’t cause collateral damage just because there’s
a crisis of some sort. One broken window is one too many.

One broken window—a badly designed piece of code, a poor
management decision that the team must live with for the

duration of the project—is all it takes to start the decline. If you
find yourself working on a project with quite a few broken
windows, it’s all too easy to slip into the mindset of “All the rest
of this code is crap, I’ll just follow suit.” It doesn’t matter if the
project has been fine up to this point. In the original experiment
leading to the “Broken Window Theory,” an abandoned car sat
for a week untouched. But once a single window was broken, the
car was stripped and turned upside down within hours.

By the same token, if you find yourself on a project where the
code is pristinely beautiful—cleanly written, well designed, and
elegant—you will likely take extra special care not to mess it up,
just like the firefighters. Even if there’s a fire raging (deadline,
release date, trade show demo, etc.), you don’t want to be the
first one to make a mess and inflict additional damage.

Just tell yourself, “No broken windows.”

RELATED SECTIONS INCLUDE

Topic 10, Orthogonality

Topic 40, Refactoring

Topic 44, Naming Things

CHALLENGES

Help strengthen your team by surveying your project
neighborhood. Choose two or three broken windows and discuss
with your colleagues what the problems are and what could be done
to fix them.

Can you tell when a window first gets broken? What is your
reaction? If it was the result of someone else’s decision, or a
management edict, what can you do about it?

Topic 4 Stone Soup and Boiled Frogs

The three soldiers returning home from war were hungry.
When they saw the village ahead their spirits lifted—they were
sure the villagers would give them a meal. But when they got
there, they found the doors locked and the windows closed.
After many years of war, the villagers were short of food, and
hoarded what they had.

Undeterred, the soldiers boiled a pot of water and carefully
placed three stones into it. The amazed villagers came out to
watch.

“This is stone soup,” the soldiers explained. “Is that all you put
in it?” asked the villagers. “Absolutely—although some say it
tastes even better with a few carrots…” A villager ran off,
returning in no time with a basket of carrots from his hoard.

A couple of minutes later, the villagers again asked “Is that it?”

“Well,” said the soldiers, “a couple of potatoes give it body.” Off
ran another villager.

Over the next hour, the soldiers listed more ingredients that
would enhance the soup: beef, leeks, salt, and herbs. Each time
a different villager would run off to raid their personal stores.

Eventually they had produced a large pot of steaming soup.
The soldiers removed the stones, and they sat down with the
entire village to enjoy the first square meal any of them had

eaten in months.

There are a couple of morals in the stone soup story. The
villagers are tricked by the soldiers, who use the villagers’
curiosity to get food from them. But more importantly, the
soldiers act as a catalyst, bringing the village together so they
can jointly produce something that they couldn’t have done by
themselves—a synergistic result. Eventually everyone wins.

Every now and then, you might want to emulate the soldiers.

You may be in a situation where you know exactly what needs
doing and how to do it. The entire system just appears before
your eyes—you know it’s right. But ask permission to tackle the
whole thing and you’ll be met with delays and blank stares.
People will form committees, budgets will need approval, and
things will get complicated. Everyone will guard their own
resources. Sometimes this is called “start-up fatigue.’’

It’s time to bring out the stones. Work out what you can
reasonably ask for. Develop it well. Once you’ve got it, show
people, and let them marvel. Then say “of course, it would be
better if we added…’’ Pretend it’s not important. Sit back and
wait for them to start asking you to add the functionality you
originally wanted. People find it easier to join an ongoing
success. Show them a glimpse of the future and you’ll get them
to rally around.

Tip 6 Be a Catalyst for Change

THE VILLAGERS’ SIDE
On the other hand, the stone soup story is also about gentle and

[7]

gradual deception. It’s about focusing too tightly. The villagers
think about the stones and forget about the rest of the world.
We all fall for it, every day. Things just creep up on us.

We’ve all seen the symptoms. Projects slowly and inexorably get
totally out of hand. Most software disasters start out too small
to notice, and most project overruns happen a day at a time.
Systems drift from their specifications feature by feature, while
patch after patch gets added to a piece of code until there’s
nothing of the original left. It’s often the accumulation of small
things that breaks morale and teams.

Tip 7 Remember the Big Picture

We’ve never tried this—honest. But “they” say that if you take a
frog and drop it into boiling water, it will jump straight back out
again. However, if you place the frog in a pan of cold water, then
gradually heat it, the frog won’t notice the slow increase in
temperature and will stay put until cooked.

Note that the frog’s problem is different from the broken
windows issue discussed in Topic 3, Software Entropy. In the
Broken Window Theory, people lose the will to fight entropy
because they perceive that no one else cares. The frog just
doesn’t notice the change.

Don’t be like the fabled frog. Keep an eye on the big picture.
Constantly review what’s happening around you, not just what
you personally are doing.

RELATED SECTIONS INCLUDE

Topic 1, It’s Your Life

Topic 38, Programming by Coincidence

CHALLENGES

While reviewing a draft of the first edition, John Lakos raised the
following issue: The soldiers progressively deceive the villagers, but
the change they catalyze does them all good. However, by
progressively deceiving the frog, you’re doing it harm. Can you
determine whether you’re making stone soup or frog soup when
you try to catalyze change? Is the decision subjective or objective?

Quick, without looking, how many lights are in the ceiling above
you? How many exits in the room? How many people? Is there
anything out of context, anything that looks like it doesn’t belong?
This is an exercise in situational awareness, a technique practiced
by folks ranging from Boy and Girl Scouts to Navy SEALs. Get in
the habit of really looking and noticing your surroundings. Then do
the same for your project.

Striving to better, oft
we mar what’s well.

Shakespeare, King Lear 1.4

Topic 5 Good-Enough Software

There’s an old(ish) joke about a
company that places an order for
100,000 ICs with a Japanese
manufacturer. Part of the
specification was the defect rate:
one chip in 10,000. A few weeks
later the order arrived: one large

box containing thousands of ICs, and a small one containing
just ten. Attached to the small box was a label that read: “These
are the faulty ones.’’

If only we really had this kind of control over quality. But the
real world just won’t let us produce much that’s truly perfect,
particularly not bug-free software. Time, technology, and
temperament all conspire against us.

However, this doesn’t have to be frustrating. As Ed Yourdon
described in an article in IEEE Software, When good-enough
software is best [You95], you can discipline yourself to write
software that’s good enough—good enough for your users, for
future maintainers, for your own peace of mind. You’ll find that
you are more productive and your users are happier. And you
may well find that your programs are actually better for their
shorter incubation.

Before we go any further, we need to qualify what we’re about to
say. The phrase “good enough’’ does not imply sloppy or poorly

produced code. All systems must meet their users’ requirements
to be successful, and meet basic performance, privacy, and
security standards. We are simply advocating that users be
given an opportunity to participate in the process of deciding
when what you’ve produced is good enough for their needs.

INVOLVE YOUR USERS IN THE TRADE-OFF

Normally you’re writing software for other people. Often you’ll
remember to find out what they want. But do you ever ask
them how good they want their software to be? Sometimes
there’ll be no choice. If you’re working on pacemakers, an
autopilot, or a low-level library that will be widely disseminated,
the requirements will be more stringent and your options more
limited.

However, if you’re working on a brand-new product, you’ll have
different constraints. The marketing people will have promises
to keep, the eventual end users may have made plans based on a
delivery schedule, and your company will certainly have cash-
flow constraints. It would be unprofessional to ignore these
users’ requirements simply to add new features to the program,
or to polish up the code just one more time. We’re not
advocating panic: it is equally unprofessional to promise
impossible time scales and to cut basic engineering corners to
meet a deadline.

The scope and quality of the system you produce should be
discussed as part of that system’s requirements.

Tip 8 Make Quality a Requirements Issue

Often you’ll be in situations where trade-offs are involved.

[8]

Surprisingly, many users would rather use software with some
rough edges today than wait a year for the shiny, bells-and-
whistles version (and in fact what they will need a year from
now may be completely different anyway). Many IT
departments with tight budgets would agree. Great software
today is often preferable to the fantasy of perfect software
tomorrow. If you give your users something to play with early,
their feedback will often lead you to a better eventual solution
(see Topic 12, Tracer Bullets).

KNOW WHEN TO STOP

In some ways, programming is like painting. You start with a
blank canvas and certain basic raw materials. You use a
combination of science, art, and craft to determine what to do
with them. You sketch out an overall shape, paint the
underlying environment, then fill in the details. You constantly
step back with a critical eye to view what you’ve done. Every
now and then you’ll throw a canvas away and start again.

But artists will tell you that all the hard work is ruined if you
don’t know when to stop. If you add layer upon layer, detail over
detail, the painting becomes lost in the paint.

Don’t spoil a perfectly good program by overembellishment and
overrefinement. Move on, and let your code stand in its own
right for a while. It may not be perfect. Don’t worry: it could
never be perfect. (In Chapter 7, While You Are Coding, we’ll
discuss philosophies for developing code in an imperfect world.)

RELATED SECTIONS INCLUDE

Topic 45, The Requirements Pit

Topic 46, Solving Impossible Puzzles

CHALLENGES

Look at the software tools and operating systems that you use
regularly. Can you find any evidence that these organizations
and/or developers are comfortable shipping software they know is
not perfect? As a user, would you rather (1) wait for them to get all
the bugs out, (2) have complex software and accept some bugs, or
(3) opt for simpler software with fewer defects?

Consider the effect of modularization on the delivery of software.
Will it take more or less time to get a tightly coupled monolithic
block of software to the required quality compared with a system
designed as very loosely coupled modules or microservices? What
are the advantages or disadvantages of each approach?

Can you think of popular software that suffers from feature bloat?
That is, software containing far more features than you would ever
use, each feature introducing more opportunity for bugs and
security vulnerabilities, and making the features you do use harder
to find and manage. Are you in danger of falling into this trap
yourself?

An investment in
knowledge always
pays the best interest.

Benjamin Franklin

Topic 6 Your Knowledge Portfolio

Ah, good old Ben Franklin—never
at a loss for a pithy homily. Why, if
we could just be early to bed and
early to rise, we’d be great
programmers—right? The early
bird might get the worm, but what
happens to the early worm?

In this case, though, Ben really hit
the nail on the head. Your knowledge and experience are your
most important day-to-day professional assets.

Unfortunately, they’re expiring assets. Your knowledge
becomes out of date as new techniques, languages, and
environments are developed. Changing market forces may
render your experience obsolete or irrelevant. Given the ever-
increasing pace of change in our technological society, this can
happen pretty quickly.

As the value of your knowledge declines, so does your value to
your company or client. We want to prevent this from ever
happening.

Your ability to learn new things is your most important strategic
asset. But how do you learn how to learn, and how do you know
what to learn?

YOUR KNOWLEDGE PORTFOLIO

[9]

We like to think of all the facts programmers know about
computing, the application domains they work in, and all their
experience as their knowledge portfolios. Managing a
knowledge portfolio is very similar to managing a financial
portfolio:

1. Serious investors invest regularly—as a habit.
2. Diversification is the key to long-term success.
3. Smart investors balance their portfolios between conservative and

high-risk, high-reward investments.
4. Investors try to buy low and sell high for maximum return.
5. Portfolios should be reviewed and rebalanced periodically.

To be successful in your career, you must invest in your
knowledge portfolio using these same guidelines.

The good news is that managing this kind of investment is a
skill just like any other—it can be learned. The trick is to make
yourself do it initially and form a habit. Develop a routine which
you follow until your brain internalizes it. At that point, you’ll
find yourself sucking up new knowledge automatically.

BUILDING YOUR PORTFOLIO

Invest regularly
Just as in financial investing, you must invest in your
knowledge portfolio regularly, even if it’s just a small
amount. The habit is as important as the sums, so plan to
use a consistent time and place, away from interruptions.
A few sample goals are listed in the next section.

Diversify
The more different things you know, the more valuable

you are. As a baseline, you need to know the ins and outs
of the particular technology you are working with
currently. But don’t stop there. The face of computing
changes rapidly—hot technology today may well be close
to useless (or at least not in demand) tomorrow. The
more technologies you are comfortable with, the better
you will be able to adjust to change. And don’t forget all
the other skills you need, including those in non-
technical areas.

Manage risk
Technology exists along a spectrum from risky,
potentially high-reward to low-risk, low-reward
standards. It’s not a good idea to invest all of your money
in high-risk stocks that might collapse suddenly, nor
should you invest all of it conservatively and miss out on
possible opportunities. Don’t put all your technical eggs
in one basket.

Buy low, sell high
Learning an emerging technology before it becomes
popular can be just as hard as finding an undervalued
stock, but the payoff can be just as rewarding. Learning
Java back when it was first introduced and unknown may
have been risky at the time, but it paid off handsomely for
the early adopters when it became an industry mainstay
later.

Review and rebalance
This is a very dynamic industry. That hot technology you
started investigating last month might be stone cold by
now. Maybe you need to brush up on that database
technology that you haven’t used in a while. Or perhaps

you could be better positioned for that new job opening if
you tried out that other language….

Of all these guidelines, the most important one is the simplest
to do:

Tip 9 Invest Regularly in Your Knowledge Portfolio

GOALS

Now that you have some guidelines on what and when to add to
your knowledge portfolio, what’s the best way to go about
acquiring intellectual capital with which to fund your portfolio?
Here are a few suggestions:

Learn at least one new language every year
Different languages solve the same problems in different
ways. By learning several different approaches, you can
help broaden your thinking and avoid getting stuck in a
rut. Additionally, learning many languages is easy thanks
to the wealth of freely available software.

Read a technical book each month
While there’s a glut of short-form essays and occasionally
reliable answers on the web, for deep understanding you
need long-form books. Browse the booksellers for
technical books on interesting topics related to your
current project. Once you’re in the habit, read a book a
month. After you’ve mastered the technologies you’re
currently using, branch out and study some that don’t
relate to your project.

Read nontechnical books, too

[10]

It is important to remember that computers are used by
people—people whose needs you are trying to satisfy. You
work with people, are employed by people, and get
hacked by people. Don’t forget the human side of the
equation, as that requires an entirely different skill set
(we ironically call these soft skills, but they are actually
quite hard to master).

Take classes
Look for interesting courses at a local or online college or
university, or perhaps at the next nearby trade show or
conference.

Participate in local user groups and meetups
Isolation can be deadly to your career; find out what
people are working on outside of your company. Don’t
just go and listen: actively participate.

Experiment with different environments
If you’ve worked only in Windows, spend some time with
Linux. If you’ve used only makefiles and an editor, try a
sophisticated IDE with cutting-edge features, and vice
versa.

Stay current
Read news and posts online on technology different from
that of your current project. It’s a great way to find out
what experiences other people are having with it, the
particular jargon they use, and so on.

It’s important to continue investing. Once you feel comfortable
with some new language or bit of technology, move on. Learn
another one.

It doesn’t matter whether you ever use any of these technologies
on a project, or even whether you put them on your resume. The
process of learning will expand your thinking, opening you to
new possibilities and new ways of doing things. The cross-
pollination of ideas is important; try to apply the lessons you’ve
learned to your current project. Even if your project doesn’t use
that technology, perhaps you can borrow some ideas. Get
familiar with object orientation, for instance, and you’ll write
procedural programs differently. Understand the functional
programming paradigm and you’ll write object-oriented code
differently, and so on.

OPPORTUNITIES FOR LEARNING

So you’re reading voraciously, you’re on top of all the latest
breaking developments in your field (not an easy thing to do),
and somebody asks you a question. You don’t have the faintest
idea what the answer is, and freely admit as much.

Don’t let it stop there. Take it as a personal challenge to find the
answer. Ask around. Search the web—the scholarly parts too,
not just the consumer parts.

If you can’t find the answer yourself, find out who can. Don’t let
it rest. Talking to other people will help build your personal
network, and you may surprise yourself by finding solutions to
other, unrelated problems along the way. And that old portfolio
just keeps getting bigger….

All of this reading and researching takes time, and time is
already in short supply. So you need to plan ahead. Always have
something to read in an otherwise dead moment. Time spent
waiting for doctors and dentists can be a great opportunity to
catch up on your reading—but be sure to bring your own e-

reader with you, or you might find yourself thumbing through a
dog-eared 1973 article about Papua New Guinea.

CRITICAL THINKING

The last important point is to think critically about what you
read and hear. You need to ensure that the knowledge in your
portfolio is accurate and unswayed by either vendor or media
hype. Beware of the zealots who insist that their dogma provides
the only answer—it may or may not be applicable to you and
your project.

Never underestimate the power of commercialism. Just because
a web search engine lists a hit first doesn’t mean that it’s the
best match; the content provider can pay to get top billing. Just
because a bookstore features a book prominently doesn’t mean
it’s a good book, or even popular; they may have been paid to
place it there.

Tip 10 Critically Analyze What You Read and Hear

Critical thinking is an entire discipline unto itself, and we
encourage you to read and study all you can about it. In the
meantime, here’s a head start with a few questions to ask and
think about.

Ask the “Five Whys”
A favorite consulting trick: ask “why?” at least five times.
Ask a question, and get an answer. Dig deeper by asking
“why?” Repeat as if you were a petulant four-year old
(but a polite one). You might be able to get closer to a
root cause this way.

Who does this benefit?
It may sound cynical, but follow the money can be a very
helpful path to analyze. The benefits to someone else or
another organization may be aligned with your own, or
not.

What’s the context?
Everything occurs in its own context, which is why “one
size fits all” solutions often don’t. Consider an article or
book touting a “best practice.” Good questions to
consider are “best for who?” What are the prerequisites,
what are the consequences, short and long term?

When or Where would this work?
Under what circumstances? Is it too late? Too early?
Don’t stop with first-order thinking (what will happen
next), but use second-order thinking: what will happen
after that?

Why is this a problem?
Is there an underlying model? How does the underlying
model work?

Unfortunately, there are very few simple answers anymore. But
with your extensive portfolio, and by applying some critical
analysis to the torrent of technical articles you will read, you can
understand the complex answers.

RELATED SECTIONS INCLUDE

Topic 1, It’s Your Life

Topic 22, Engineering Daybooks

CHALLENGES

Start learning a new language this week. Always programmed in the
same old language? Try Clojure, Elixir, Elm, F#, Go, Haskell,
Python, R, ReasonML, Ruby, Rust, Scala, Swift, TypeScript, or
anything else that appeals and/or looks as if you might like it.

Start reading a new book (but finish this one first!). If you are doing
very detailed implementation and coding, read a book on design
and architecture. If you are doing high-level design, read a book on
coding techniques.

Get out and talk technology with people who aren’t involved in your
current project, or who don’t work for the same company. Network
in your company cafeteria, or maybe seek out fellow enthusiasts at
a local meetup.

[11]

I believe that it is
better to be looked over
than it is to be
overlooked.

Mae West, Belle of the
Nineties, 1934

Topic 7 Communicate!

Maybe we can learn a lesson from
Ms. West. It’s not just what you’ve
got, but also how you package it.
Having the best ideas, the finest
code, or the most pragmatic
thinking is ultimately sterile unless
you can communicate with other
people. A good idea is an orphan
without effective communication.

As developers, we have to communicate on many levels. We
spend hours in meetings, listening and talking. We work with
end users, trying to understand their needs. We write code,
which communicates our intentions to a machine and
documents our thinking for future generations of developers.
We write proposals and memos requesting and justifying
resources, reporting our status, and suggesting new approaches.
And we work daily within our teams to advocate our ideas,
modify existing practices, and suggest new ones. A large part of
our day is spent communicating, so we need to do it well.

Treat English (or whatever your native tongue may be) as just
another programming language. Write natural language as you
would write code: honor the DRY principle, ETC, automation,
and so on. (We discuss the DRY and ETC design principles in
the next chapter.)

Tip 11 English is Just Another Programming Language

We’ve put together a list of additional ideas that we find useful.

KNOW YOUR AUDIENCE

You’re communicating only if you’re conveying what you mean
to convey—just talking isn’t enough. To do that, you need to
understand the needs, interests, and capabilities of your
audience. We’ve all sat in meetings where a development geek
glazes over the eyes of the vice president of marketing with a
long monologue on the merits of some arcane technology. This
isn’t communicating: it’s just talking, and it’s annoying.

Say you want to change your remote monitoring system to use a
third-party message broker to disseminate status notifications.
You can present this update in many different ways, depending
on your audience. End users will appreciate that their systems
can now interoperate with other services that use the broker.
Your marketing department will be able to use this fact to boost
sales. Development and operations managers will be happy
because the care and maintenance of that part of the system is
now someone else’s problem. Finally, developers may enjoy
getting experience with new APIs, and may even be able to find
new uses for the message broker. By making the appropriate
pitch to each group, you’ll get them all excited about your
project.

As with all forms of communication, the trick here is to gather
feedback. Don’t just wait for questions: ask for them. Look at
body language, and facial expressions. One of the Neuro
Linguistic Programming presuppositions is “The meaning of
your communication is the response you get.” Continuously
improve your knowledge of your audience as you communicate.

[12]

KNOW WHAT YOU WANT TO SAY

Probably the most difficult part of the more formal styles of
communication used in business is working out exactly what it
is you want to say. Fiction writers often plot out their books in
detail before they start, but people writing technical documents
are often happy to sit down at a keyboard, enter:

1. Introduction

and start typing whatever comes into their heads next.

Plan what you want to say. Write an outline. Then ask yourself,
“Does this communicate what I want to express to my audience
in a way that works for them?” Refine it until it does.

This approach works for more than just documents. When
you’re faced with an important meeting or a chat with a major
client, jot down the ideas you want to communicate, and plan a
couple of strategies for getting them across.

Now that you know what your audience wants, let’s deliver it.

CHOOSE YOUR MOMENT
It’s six o’clock on Friday afternoon, following a week when the
auditors have been in. Your boss’s youngest is in the hospital,
it’s pouring rain outside, and the commute home is guaranteed
to be a nightmare. This probably isn’t a good time to ask her for
a memory upgrade for your laptop.

As part of understanding what your audience needs to hear, you
need to work out what their priorities are. Catch a manager
who’s just been given a hard time by her boss because some

source code got lost, and you’ll have a more receptive listener to
your ideas on source code repositories. Make what you’re saying
relevant in time, as well as in content. Sometimes all it takes is
the simple question, “Is this a good time to talk about…?’’

CHOOSE A STYLE

Adjust the style of your delivery to suit your audience. Some
people want a formal “just the facts’’ briefing. Others like a long,
wide-ranging chat before getting down to business. What is
their skill level and experience in this area? Are they experts?
Newbies? Do they need hand-holding or just a quick tl;dr? If in
doubt, ask.

Remember, however, that you are half of the communication
transaction. If someone says they need a paragraph describing
something and you can’t see any way of doing it in less than
several pages, tell them so. Remember, that kind of feedback is
a form of communication, too.

MAKE IT LOOK GOOD
Your ideas are important. They deserve a good-looking vehicle
to convey them to your audience.

Too many developers (and their managers) concentrate solely
on content when producing written documents. We think this is
a mistake. Any chef (or watcher of the Food Network) will tell
you that you can slave in the kitchen for hours only to ruin your
efforts with poor presentation.

There is no excuse today for producing poor-looking printed
documents. Modern software can produce stunning output,
regardless of whether you’re writing using Markdown or using a

word processor. You need to learn just a few basic commands. If
you’re using a word processor, use its style sheets for
consistency. (Your company may already have defined style
sheets that you can use.) Learn how to set page headers and
footers. Look at the sample documents included with your
package to get ideas on style and layout. Check the spelling, first
automatically and then by hand. After awl, their are spelling
miss steaks that the chequer can knot ketch.

INVOLVE YOUR AUDIENCE

We often find that the documents we produce end up being less
important than the process we go through to produce them. If
possible, involve your readers with early drafts of your
document. Get their feedback, and pick their brains. You’ll build
a good working relationship, and you’ll probably produce a
better document in the process.

BE A LISTENER
There’s one technique that you must use if you want people to
listen to you: listen to them. Even if this is a situation where you
have all the information, even if this is a formal meeting with
you standing in front of 20 suits—if you don’t listen to them,
they won’t listen to you.

Encourage people to talk by asking questions, or ask them to
restate the discussion in their own words. Turn the meeting into
a dialog, and you’ll make your point more effectively. Who
knows, you might even learn something.

GET BACK TO PEOPLE

If you ask someone a question, you feel they’re impolite if they
don’t respond. But how often do you fail to get back to people

when they send you an email or a memo asking for information
or requesting some action? In the rush of everyday life, it’s easy
to forget. Always respond to emails and voicemails, even if the
response is simply “I’ll get back to you later.’’ Keeping people
informed makes them far more forgiving of the occasional slip,
and makes them feel that you haven’t forgotten them.

Tip 12 It’s Both What You Say and the Way You Say It

Unless you work in a vacuum, you need to be able to
communicate. The more effective that communication, the
more influential you become.

DOCUMENTATION

Finally, there’s the matter of communicating via
documentation. Typically, developers don’t give much thought
to documentation. At best it is an unfortunate necessity; at
worst it is treated as a low-priority task in the hope that
management will forget about it at the end of the project.

Pragmatic Programmers embrace documentation as an integral
part of the overall development process. Writing documentation
can be made easier by not duplicating effort or wasting time,
and by keeping documentation close at hand—in the code itself.
In fact, we want to apply all of our pragmatic principles to
documentation as well as to code.

Tip 13 Build Documentation In, Don’t Bolt It On

It’s easy to produce good-looking documentation from the
comments in source code, and we recommend adding

comments to modules and exported functions to give other
developers a leg up when they come to use it.

However, this doesn’t mean we agree with the folks who say that
every function, data structure, type declaration, etc., needs its
own comment. This kind of mechanical comment writing
actually makes it more difficult to maintain code: now there are
two things to update when you make a change. So restrict your
non-API commenting to discussing why something is done, its
purpose and its goal. The code already shows how it is done, so
commenting on this is redundant—and is a violation of the DRY
principle.

Commenting source code gives you the perfect opportunity to
document those elusive bits of a project that can’t be
documented anywhere else: engineering trade-offs, why
decisions were made, what other alternatives were discarded,
and so on.

SUMMARY

Know what you want to say.

Know your audience.

Choose your moment.

Choose a style.

Make it look good.

Involve your audience.

Be a listener.

Get back to people.

Keep code and documentation together.

RELATED SECTIONS INCLUDE

Topic 15, Estimating

Topic 18, Power Editing

Topic 45, The Requirements Pit

Topic 49, Pragmatic Teams

Online Communication

Everything we’ve said about communicating in writing applies equally to email, social
media posts, blogs, and so on. Email in particular has evolved to the point where it is a
mainstay of corporate communications; it’s used to discuss contracts, to settle disputes,
and as evidence in court. But for some reason, people who would never send out a
shabby paper document are happy to fling nasty-looking, incoherent emails around the
world.

Our tips are simple:

Proofread before you hit SEND .

Check your spelling and look for any accidental auto-correct mishaps.

Keep the format simple and clear.

Keep quoting to a minimum. No one likes to receive back their own 100-line
email with “I agree” tacked on.

If you’re quoting other people’s email, be sure to attribute it, and quote it inline
(rather than as an attachment). Same when quoting on social media
platforms.

Don’t flame or act like a troll unless you want it to come back and haunt you
later. If you wouldn’t say it to someone’s face, don’t say it online.

Check your list of recipients before sending. It’s become a cliché to criticize
the boss over departmental email without realizing that the boss is on the cc
list. Better yet, don’t criticize the boss over email.

As countless large corporations and politicians have discovered, email and social
media posts are forever. Try to give the same attention and care to email as you would
to any written memo or report.

CHALLENGES

There are several good books that contain sections on
communications within teams, including The Mythical Man-
Month: Essays on Software Engineering [Bro96] and Peopleware:
Productive Projects and Teams [DL13]. Make it a point to try to
read these over the next 18 months. In addition, Dinosaur Brains:
Dealing with All Those Impossible People at Work [BR89]
discusses the emotional baggage we all bring to the work
environment.

The next time you have to give a presentation, or write a memo
advocating some position, try working through the advice in this
section before you start. Explicitly identify the audience and what
you need to communicate. If appropriate, talk to your audience
afterward and see how accurate your assessment of their needs was.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Footnotes

http://wiki.c2.com/?ChangeYourOrganization

See, for example, a good meta-analysis at Trust and team performance: A meta-
analysis of main effects, moderators, and covariates,
http://dx.doi.org/10.1037/apl0000110

See The police and neighborhood safety [WH82]

See Contagious depression: Existence, specificity to depressed symptoms, and the role
of reassurance seeking [Joi94]

While doing this, you may be comforted by the line attributed to Rear Admiral Dr. Grace
Hopper: “It’s easier to ask forgiveness than it is to get permission.’’

That was supposed to be a joke!

An expiring asset is something whose value diminishes over time. Examples include a
warehouse full of bananas and a ticket to a ball game.

We may be biased, but there’s a fine selection available at https://pragprog.com.

Never heard of any of these languages? Remember, knowledge is an expiring asset, and
so is popular technology. The list of hot new and experimental languages was very
different for the first edition, and is probably different again by the time you read this.
All the more reason to keep learning.

Copyright © 2020 Pearson Education, Inc.

[12] The word annoy comes from the Old French enui, which also means “to bore.’’

Chapter 2

A Pragmatic Approach

There are certain tips and tricks that apply at all levels of
software development, processes that are virtually universal,
and ideas that are almost axiomatic. However, these approaches
are rarely documented as such; you’ll mostly find them written
down as odd sentences in discussions of design, project
management, or coding. But for your convenience, we’ll bring
these ideas and processes together here.

The first and maybe most important topic gets to the heart of
software development: Topic 8, The Essence of Good Design.
Everything follows from this.

The next two sections, Topic 9, DRY—The Evils of Duplication
and Topic 10, Orthogonality, are closely related. The first warns
you not to duplicate knowledge throughout your systems, the
second not to split any one piece of knowledge across multiple
system components.

As the pace of change increases, it becomes harder and harder
to keep our applications relevant. In Topic 11, Reversibility,
we’ll look at some techniques that help insulate your projects
from their changing environment.

The next two sections are also related. In Topic 12, Tracer
Bullets, we talk about a style of development that allows you to
gather requirements, test designs, and implement code at the
same time. It’s the only way to keep up with the pace of modern
life.

Topic 13, Prototypes and Post-it Notes shows you how to use
prototyping to test architectures, algorithms, interfaces, and
ideas. In the modern world, it’s critical to test ideas and get
feedback before you commit to them whole-heartedly.

As computer science slowly matures, designers are producing
increasingly higher-level languages. While the compiler that
accepts “make it so” hasn’t yet been invented, in Topic 14,
Domain Languages we present some more modest suggestions
that you can implement for yourself.

Finally, we all work in a world of limited time and resources.
You can survive these scarcities better (and keep your bosses or
clients happier) if you get good at working out how long things
will take, which we cover in Topic 15, Estimating.

Keep these fundamental principles in mind during
development, and you’ll write code that’s better, faster, and
stronger. You can even make it look easy.

Topic 8 The Essence of Good Design

The world is full of gurus and pundits, all eager to pass on their
hard-earned wisdom when it comes to How to Design Software.
There are acronyms, lists (which seem to favor five entries),
patterns, diagrams, videos, talks, and (the internet being the
internet) probably a cool series on the Law of Demeter
explained using interpretive dance.

And we, your gentle authors, are guilty of this too. But we’d like
to make amends by explaining something that only became
apparent to us fairly recently. First, the general statement:

Tip 14 Good Design Is Easier to Change Than Bad Design

A thing is well designed if it adapts to the people who use it. For
code, that means it must adapt by changing. So we believe in the
ETC principle: Easier to Change. ETC. That’s it.

As far as we can tell, every design principle out there is a special
case of ETC.

Why is decoupling good? Because by isolating concerns we
make each easier to change. ETC.

Why is the single responsibility principle useful? Because a
change in requirements is mirrored by a change in just one
module. ETC.

Why is naming important? Because good names make code
easier to read, and you have to read it to change it. ETC!

ETC IS A VALUE, NOT A RULE

Values are things that help you make decisions: should I do this,
or that? When it comes to thinking about software, ETC is a
guide, helping you choose between paths. Just like all your
other values, it should be floating just behind your conscious
thought, subtly nudging you in the right direction.

But how do you make that happen? Our experience is that it
requires some initial conscious reinforcement. You may need to
spend a week or so deliberately asking yourself “did the thing I
just did make the overall system easier or harder to change?” Do
it when you save a file. Do it when you write a test. Do it when
you fix a bug.

There’s an implicit premise in ETC. It assumes that a person can
tell which of many paths will be easier to change in the future.
Much of the time, common sense will be correct, and you can
make an educated guess.

Sometimes, though, you won’t have a clue. That’s OK. In those
cases, we think you can do two things.

First, given that you’re not sure what form change will take, you
can always fall back on the ultimate “easy to change” path: try to
make what you write replaceable. That way, whatever happens
in the future, this chunk of code won’t be a roadblock. It seems
extreme, but actually it’s what you should be doing all the time,
anyway. It’s really just thinking about keeping code decoupled
and cohesive.

Second, treat this as a way to develop instincts. Note the
situation in your engineering day book: the choices you have,
and some guesses about change. Leave a tag in the source.
Then, later, when this code has to change, you’ll be able to look
back and give yourself feedback. It might help the next time you
reach a similar fork in the road.

The rest of the sections in this chapter have specific ideas on
design, but all are motivated by this one principle.

RELATED SECTIONS INCLUDE

Topic 9, DRY—The Evils of Duplication

Topic 10, Orthogonality

Topic 11, Reversibility

Topic 14, Domain Languages

Topic 28, Decoupling

Topic 30, Transforming Programming

Topic 31, Inheritance Tax

CHALLENGES

Think about a design principle you use regularly. Is it intended to
make things easy-to-change?

Also think about languages and programming paradigms (OO, FP,
Reactive, and so on). Do any have either big positives or big
negatives when it comes to helping you write ETC code? Do any
have both?
When coding, what can you do to eliminate the negatives and
accentuate the positives?[13]

Many editors have support (either built-in or via extensions) to run
commands when you save a file. Get your editor to popup an ETC?
message every time you save and use it as a cue to think about
the code you just wrote. Is it easy to change?

[14]

Topic 9 DRY—The Evils of Duplication

Giving a computer two contradictory pieces of knowledge was
Captain James T. Kirk’s preferred way of disabling a marauding
artificial intelligence. Unfortunately, the same principle can be
effective in bringing down your code.

As programmers, we collect, organize, maintain, and harness
knowledge. We document knowledge in specifications, we make
it come alive in running code, and we use it to provide the
checks needed during testing.

Unfortunately, knowledge isn’t stable. It changes—often rapidly.
Your understanding of a requirement may change following a
meeting with the client. The government changes a regulation
and some business logic gets outdated. Tests may show that the
chosen algorithm won’t work. All this instability means that we
spend a large part of our time in maintenance mode,
reorganizing and reexpressing the knowledge in our systems.

Most people assume that maintenance begins when an
application is released, that maintenance means fixing bugs and
enhancing features. We think these people are wrong.
Programmers are constantly in maintenance mode. Our
understanding changes day by day. New requirements arrive
and existing requirements evolve as we’re heads-down on the
project. Perhaps the environment changes. Whatever the
reason, maintenance is not a discrete activity, but a routine part
of the entire development process.

When we perform maintenance, we have to find and change the
representations of things—those capsules of knowledge
embedded in the application. The problem is that it’s easy to
duplicate knowledge in the specifications, processes, and
programs that we develop, and when we do so, we invite a
maintenance nightmare—one that starts well before the
application ships.

We feel that the only way to develop software reliably, and to
make our developments easier to understand and maintain, is
to follow what we call the DRY principle:

Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.

Why do we call it DRY?

Tip 15 DRY—Don’t Repeat Yourself

The alternative is to have the same thing expressed in two or
more places. If you change one, you have to remember to
change the others, or, like the alien computers, your program
will be brought to its knees by a contradiction. It isn’t a question
of whether you’ll remember: it’s a question of when you’ll
forget.

You’ll find the DRY principle popping up time and time again
throughout this book, often in contexts that have nothing to do
with coding. We feel that it is one of the most important tools in
the Pragmatic Programmer’s tool box.

In this section we’ll outline the problems of duplication and

suggest general strategies for dealing with it.

DRY IS MORE THAN CODE

Let’s get something out of the way up-front. In the first edition
of this book we did a poor job of explaining just what we meant
by Don’t Repeat Yourself. Many people took it to refer to code
only: they thought that DRY means “don’t copy-and-paste lines
of source.”

That is part of DRY, but it’s a tiny and fairly trivial part.

DRY is about the duplication of knowledge, of intent. It’s about
expressing the same thing in two different places, possibly in
two totally different ways.

Here’s the acid test: when some single facet of the code has to
change, do you find yourself making that change in multiple
places, and in multiple different formats? Do you have to
change code and documentation, or a database schema and a
structure that holds it, or…? If so, your code isn’t DRY.

So let’s look at some typical examples of duplication.

DUPLICATION IN CODE

It may be trivial, but code duplication is oh, so common. Here’s
an example:

 def print_balance(account)
 printf "Debits: %10.2f\n", account.debits
 printf "Credits: %10.2f\n", account.credits
 if account.fees < 0
 printf "Fees: %10.2f-\n", -account.fees
 else
 printf "Fees: %10.2f\n", account.fees

 end
 printf " ———-\n"
 if account.balance < 0
 printf "Balance: %10.2f-\n", -account.balance
 else
 printf "Balance: %10.2f\n", account.balance
 end
 end

For now ignore the implication that we’re committing the
newbie mistake of storing currencies in floats. Instead see if you
can spot duplications in this code. (We can see at least three
things, but you might see more.)

What did you find? Here’s our list.

First, there’s clearly a copy-and-paste duplication of handling
the negative numbers. We can fix that by adding another
function:

 def format_amount(value)
 result = sprintf("%10.2f", value.abs)
 if value < 0
 result + "-"
 else
 result + " "
 end
 end

 def print_balance(account)
 printf "Debits: %10.2f\n", account.debits
 printf "Credits: %10.2f\n", account.credits
 printf "Fees: %s\n", format_amount(account.fees)
 printf " ———-\n"
 printf "Balance: %s\n", format_amount(account.balance)
 end

Another duplication is the repetition of the field width in all the
printf calls. We could fix this by introducing a constant and

passing it to each call, but why not just use the existing
function?

 def format_amount(value)
 result = sprintf("%10.2f", value.abs)
 if value < 0
 result + "-"
 else
 result + " "
 end
 end

 def print_balance(account)
 printf "Debits: %s\n", format_amount(account.debits)
 printf "Credits: %s\n", format_amount(account.credits)
 printf "Fees: %s\n", format_amount(account.fees)
 printf " ———-\n"
 printf "Balance: %s\n", format_amount(account.balance)
 end

Anything more? Well, what if the client asks for an extra space
between the labels and the numbers? We’d have to change five
lines. Let’s remove that duplication:

 def format_amount(value)
 result = sprintf("%10.2f", value.abs)
 if value < 0
 result + "-"
 else
 result + " "
 end
 end

 def print_line(label, value)
 printf "%-9s%s\n", label, value
 end

 def report_line(label, amount)
 print_line(label + ":", format_amount(amount))
 end

 def print_balance(account)
 report_line("Debits", account.debits)
 report_line("Credits", account.credits)
 report_line("Fees", account.fees)
 print_line("", "———-")
 report_line("Balance", account.balance)
 end

If we have to change the formatting of amounts, we change
format_amount. If we want to change the label format, we change
report_line.

There’s still an implicit DRY violation: the number of hyphens
in the separator line is related to the width of the amount field.
But it isn’t an exact match: it’s currently one character shorter,
so any trailing minus signs extend beyond the column. This is
the customer’s intent, and it’s a different intent to the actual
formatting of amounts.

Not All Code Duplication Is Knowledge Duplication

As part of your online wine ordering application you’re
capturing and validating your user’s age, along with the quantity
they’re ordering. According to the site owner, they should both
be numbers, and both greater than zero. So you code up the
validations:

 def validate_age(value):
 validate_type(value, :integer)
 validate_min_integer(value, 0)

 def validate_quantity(value):
 validate_type(value, :integer)
 validate_min_integer(value, 0)

During code review, the resident know-it-all bounces this code,
claiming it’s a DRY violation: both function bodies are the same.

They are wrong. The code is the same, but the knowledge they
represent is different. The two functions validate two separate
things that just happen to have the same rules. That’s a
coincidence, not a duplication.

DUPLICATION IN DOCUMENTATION

Somehow the myth was born that you should comment all your
functions. Those who believe in this insanity then produce
something such as this:

 # Calculate the fees for this account.
 #
 # * Each returned check costs $20
 # * If the account is in overdraft for more than 3 days,
 # charge $10 for each day
 # * If the average account balance is greater that $2,000
 # reduce the fees by 50%

 def fees(a)
 f = 0
 if a.returned_check_count > 0
 f += 20 * a.returned_check_count
 end
 if a.overdraft_days > 3
 f += 10*a.overdraft_days
 end
 if a.average_balance > 2_000
 f /= 2
 end
 f
 end

The intent of this function is given twice: once in the comment
and again in the code. The customer changes a fee, and we have
to update both. Given time, we can pretty much guarantee the
comment and the code will get out of step.

Ask yourself what the comment adds to the code. From our

point of view, it simply compensates for some bad naming and
layout. How about just this:

 def calculate_account_fees(account)
 fees = 20 * account.returned_check_count
 fees += 10 * account.overdraft_days if account.overdraft_days > 3
 fees /= 2 if account.average_balance > 2_000
 fees
 end

The name says what it does, and if someone needs details,
they’re laid out in the source. That’s DRY!

DRY Violations in Data

Our data structures represent knowledge, and they can fall afoul
of the DRY principle. Let’s look at a class representing a line:

 class Line {
 Point start;
 Point end;
 double length;
 };

At first sight, this class might appear reasonable. A line clearly
has a start and end, and will always have a length (even if it’s
zero). But we have duplication. The length is defined by the
start and end points: change one of the points and the length
changes. It’s better to make the length a calculated field:

 class Line {
 Point start;
 Point end;
 double length() { return start.distanceTo(end); }
 };

Later on in the development process, you may choose to violate
the DRY principle for performance reasons. Frequently this
occurs when you need to cache data to avoid repeating

expensive operations. The trick is to localize the impact. The
violation is not exposed to the outside world: only the methods
within the class have to worry about keeping things straight:

 class Line {
 private double length;
 private Point start;
 private Point end;

 public Line(Point start, Point end) {
 this.start = start;
 this.end = end;
 calculateLength();
 }

 // public
 void setStart(Point p) { this.start = p; calculateLength(); }
 void setEnd(Point p) { this.end = p; calculateLength(); }

 Point getStart() { return start; }
 Point getEnd() { return end; }

 double getLength() { return length; }

 private void calculateLength() {
 this.length = start.distanceTo(end);
 }
 };

This example also illustrates an important issue: whenever a
module exposes a data structure, you’re coupling all the code
that uses that structure to the implementation of that module.
Where possible, always use accessor functions to read and write
the attributes of objects. It will make it easier to add
functionality in the future.

This use of accessor functions ties in with Meyer’s Uniform
Access principle, described in Object-Oriented Software
Construction [Mey97], which states that

All services offered by a module should be available through a
uniform notation, which does not betray whether they are
implemented through storage or through computation.

REPRESENTATIONAL DUPLICATION

Your code interfaces to the outside world: other libraries via
APIs, other services via remote calls, data in external sources,
and so on. And pretty much each time you do, you introduce
some kind of DRY violation: your code has to have knowledge
that is also present in the external thing. It needs to know the
API, or the schema, or the meaning of error codes, or whatever.
The duplication here is that two things (your code and the
external entity) have to have knowledge of the representation of
their interface. Change it at one end, and the other end breaks.

This duplication is inevitable, but can be mitigated. Here are
some strategies.

Duplication Across Internal APIs

For internal APIs, look for tools that let you specify the API in
some kind of neutral format. These tools will typically generate
documentation, mock APIs, functional tests, and API clients,
the latter in a number of different languages. Ideally the tool
will store all your APIs in a central repository, allowing them to
be shared across teams.

Duplication Across External APIs

Increasingly, you’ll find that public APIs are documented
formally using something like OpenAPI. This allows you to
import the API spec into your local API tools and integrate more
reliably with the service.

If you can’t find such a specification, consider creating one and

[15]

publishing it. Not only will others find it useful; you may even
get help maintaining it.

Duplication with Data Sources

Many data sources allow you to introspect on their data schema.
This can be used to remove much of the duplication between
them and your code. Rather than manually creating the code to
contain this stored data, you can generate the containers
directly from the schema. Many persistence frameworks will do
this heavy lifting for you.

There’s another option, and one we often prefer. Rather than
writing code that represents external data in a fixed structure
(an instance of a struct or class, for example), just stick it into a
key/value data structure (your language might call it a map,
hash, dictionary, or even object).

On its own this is risky: you lose a lot of the security of knowing
just what data you’re working with. So we recommend adding a
second layer to this solution: a simple table-driven validation
suite that verifies that the map you’ve created contains at least
the data you need, in the format you need it. Your API
documentation tool might be able to generate this.

INTERDEVELOPER DUPLICATION

Perhaps the hardest type of duplication to detect and handle
occurs between different developers on a project. Entire sets of
functionality may be inadvertently duplicated, and that
duplication could go undetected for years, leading to
maintenance problems. We heard firsthand of a U.S. state
whose governmental computer systems were surveyed for Y2K
compliance. The audit turned up more than 10,000 programs
that each contained a different version of Social Security

Number validation code.

At a high level, deal with the problem by building a strong,
tight-knit team with good communications.

However, at the module level, the problem is more insidious.
Commonly needed functionality or data that doesn’t fall into an
obvious area of responsibility can get implemented many times
over.

We feel that the best way to deal with this is to encourage active
and frequent communication between developers.

Maybe run a daily scrum standup meeting. Set up forums (such
as Slack channels) to discuss common problems. This provides
a nonintrusive way of communicating—even across multiple
sites—while retaining a permanent history of everything said.

Appoint a team member as the project librarian, whose job is to
facilitate the exchange of knowledge. Have a central place in the
source tree where utility routines and scripts can be deposited.
And make a point of reading other people’s source code and
documentation, either informally or during code reviews. You’re
not snooping—you’re learning from them. And remember, the
access is reciprocal—don’t get twisted about other people poring
(pawing?) through your code, either.

Tip 16 Make It Easy to Reuse

What you’re trying to do is foster an environment where it’s
easier to find and reuse existing stuff than to write it yourself. If
it isn’t easy, people won’t do it. And if you fail to reuse, you risk

duplicating knowledge.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 28, Decoupling

Topic 32, Configuration

Topic 38, Programming by Coincidence

Topic 40, Refactoring

images/orthogonality.png

Topic 10 Orthogonality

Orthogonality is a critical concept if you want to produce
systems that are easy to design, build, test, and extend.
However, the concept of orthogonality is rarely taught directly.
Often it is an implicit feature of various other methods and
techniques you learn. This is a mistake. Once you learn to apply
the principle of orthogonality directly, you’ll notice an
immediate improvement in the quality of systems you produce.

WHAT IS ORTHOGONALITY?

“Orthogonality’’ is a term
borrowed from geometry. Two
lines are orthogonal if they meet at
right angles, such as the axes on a
graph. In vector terms, the two
lines are independent. As the
number 1 on the diagram moves north, it doesn’t change how
far east or west it is. The number 2 moves east, but not north or
south.

In computing, the term has come to signify a kind of
independence or decoupling. Two or more things are orthogonal
if changes in one do not affect any of the others. In a well-
designed system, the database code will be orthogonal to the
user interface: you can change the interface without affecting
the database, and swap databases without changing the
interface.

Before we look at the benefits of orthogonal systems, let’s first
look at a system that isn’t orthogonal.

A Nonorthogonal System

You’re on a helicopter tour of the Grand Canyon when the pilot,
who made the obvious mistake of eating fish for lunch, suddenly
groans and faints. Fortunately, he left you hovering 100 feet
above the ground.

As luck would have it, you had read a Wikipedia page about
helicopters the previous night. You know that helicopters have
four basic controls. The cyclic is the stick you hold in your right
hand. Move it, and the helicopter moves in the corresponding
direction. Your left hand holds the collective pitch lever. Pull up
on this and you increase the pitch on all the blades, generating
lift. At the end of the pitch lever is the throttle. Finally you have
two foot pedals, which vary the amount of tail rotor thrust and
so help turn the helicopter.

“Easy!,” you think. “Gently lower the collective pitch lever and
you’ll descend gracefully to the ground, a hero.” However, when
you try it, you discover that life isn’t that simple. The
helicopter’s nose drops, and you start to spiral down to the left.
Suddenly you discover that you’re flying a system where every
control input has secondary effects. Lower the left-hand lever
and you need to add compensating backward movement to the
right-hand stick and push the right pedal. But then each of these
changes affects all of the other controls again. Suddenly you’re
juggling an unbelievably complex system, where every change
impacts all the other inputs. Your workload is phenomenal:
your hands and feet are constantly moving, trying to balance all
the interacting forces.

Helicopter controls are decidedly not orthogonal.

BENEFITS OF ORTHOGONALITY

As the helicopter example illustrates, nonorthogonal systems
are inherently more complex to change and control. When
components of any system are highly interdependent, there is
no such thing as a local fix.

Tip 17 Eliminate Effects Between Unrelated Things

We want to design components that are self-contained:
independent, and with a single, well-defined purpose (what
Yourdon and Constantine call cohesion in Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design [YC79]). When components are isolated from
one another, you know that you can change one without having
to worry about the rest. As long as you don’t change that
component’s external interfaces, you can be confident that you
won’t cause problems that ripple through the entire system.

You get two major benefits if you write orthogonal systems:
increased productivity and reduced risk.

Gain Productivity

Changes are localized, so development time and testing time are
reduced. It is easier to write relatively small, self-contained
components than a single large block of code. Simple components
can be designed, coded, tested, and then forgotten—there is no
need to keep changing existing code as you add new code.

An orthogonal approach also promotes reuse. If components have
specific, well-defined responsibilities, they can be combined with
new components in ways that were not envisioned by their original

implementors. The more loosely coupled your systems, the easier
they are to reconfigure and reengineer.

There is a fairly subtle gain in productivity when you combine
orthogonal components. Assume that one component does
distinct things and another does things. If they are orthogonal
and you combine them, the result does things. However, if the
two components are not orthogonal, there will be overlap, and the
result will do less. You get more functionality per unit effort by
combining orthogonal components.

Reduce Risk

An orthogonal approach reduces the risks inherent in any
development.

Diseased sections of code are isolated. If a module is sick, it is less
likely to spread the symptoms around the rest of the system. It is
also easier to slice it out and transplant in something new and
healthy.

The resulting system is less fragile. Make small changes and fixes to
a particular area, and any problems you generate will be restricted
to that area.

An orthogonal system will probably be better tested, because it will
be easier to design and run tests on its components.

You will not be as tightly tied to a particular vendor, product, or
platform, because the interfaces to these third-party components
will be isolated to smaller parts of the overall development.

Let’s look at some of the ways you can apply the principle of
orthogonality to your work.

DESIGN

Most developers are familiar with the need to design orthogonal
systems, although they may use words such as modular,

component-based, and layered to describe the process. Systems
should be composed of a set of cooperating modules, each of
which implements functionality independent of the others.
Sometimes these components are organized into layers, each
providing a level of abstraction. This layered approach is a
powerful way to design orthogonal systems. Because each layer
uses only the abstractions provided by the layers below it, you
have great flexibility in changing underlying implementations
without affecting code. Layering also reduces the risk of
runaway dependencies between modules. You’ll often see
layering expressed in diagrams:

images/layer-diagram.png

There is an easy test for orthogonal design. Once you have your
components mapped out, ask yourself: If I dramatically change
the requirements behind a particular function, how many
modules are affected? In an orthogonal system, the answer
should be “one.’’ Moving a button on a GUI panel should not
require a change in the database schema. Adding context-
sensitive help should not change the billing subsystem.

[16]

Let’s consider a complex system for monitoring and controlling
a heating plant. The original requirement called for a graphical
user interface, but the requirements were changed to add a
mobile interface that lets engineers monitor key values. In an
orthogonally designed system, you would need to change only
those modules associated with the user interface to handle this:
the underlying logic of controlling the plant would remain
unchanged. In fact, if you structure your system carefully, you
should be able to support both interfaces with the same
underlying code base.

Also ask yourself how decoupled your design is from changes in
the real world. Are you using a telephone number as a customer
identifier? What happens when the phone company reassigns
area codes? Postal codes, Social Security Numbers or
government IDs, email addresses, and domains are all external
identifiers that you have no control over, and could change at
any time for any reason. Don’t rely on the properties of things
you can’t control.

TOOLKITS AND LIBRARIES

Be careful to preserve the orthogonality of your system as you
introduce third-party toolkits and libraries. Choose your
technologies wisely.

When you bring in a toolkit (or even a library from other
members of your team), ask yourself whether it imposes
changes on your code that shouldn’t be there. If an object
persistence scheme is transparent, then it’s orthogonal. If it
requires you to create or access objects in a special way, then it’s
not. Keeping such details isolated from your code has the added
benefit of making it easier to change vendors in the future.

The Enterprise Java Beans (EJB) system is an interesting
example of orthogonality. In most transaction-oriented systems,
the application code has to delineate the start and end of each
transaction. With EJB, this information is expressed
declaratively as annotations, outside the methods that do the
work. The same application code can run in different EJB
transaction environments with no change.

In a way, EJB is an example of the Decorator Pattern: adding
functionality to things without changing them. This style of
programming can be used in just about every programming
language, and doesn’t necessarily require a framework or
library. It just takes a little discipline when programming.

CODING

Every time you write code you run the risk of reducing the
orthogonality of your application. Unless you constantly
monitor not just what you are doing but also the larger context
of the application, you might unintentionally duplicate
functionality in some other module, or express existing
knowledge twice.

There are several techniques you can use to maintain
orthogonality:

Keep your code decoupled
Write shy code—modules that don’t reveal anything
unnecessary to other modules and that don’t rely on
other modules’ implementations. Try the Law of
Demeter, which we discuss in Topic 28, Decoupling. If
you need to change an object’s state, get the object to do
it for you. This way your code remains isolated from the
other code’s implementation and increases the chances

that you’ll remain orthogonal.

Avoid global data
Every time your code references global data, it ties itself
into the other components that share that data. Even
globals that you intend only to read can lead to trouble
(for example, if you suddenly need to change your code to
be multithreaded). In general, your code is easier to
understand and maintain if you explicitly pass any
required context into your modules. In object-oriented
applications, context is often passed as parameters to
objects’ constructors. In other code, you can create
structures containing the context and pass around
references to them.

The Singleton pattern in Design Patterns: Elements of
Reusable Object-Oriented Software [GHJV95] is a way of
ensuring that there is only one instance of an object of a
particular class. Many people use these singleton objects
as a kind of global variable (particularly in languages,
such as Java, that otherwise do not support the concept
of globals). Be careful with singletons—they can also lead
to unnecessary linkage.

Avoid similar functions
Often you’ll come across a set of functions that all look
similar—maybe they share common code at the start and
end, but each has a different central algorithm. Duplicate
code is a symptom of structural problems. Have a look at
the Strategy pattern in Design Patterns for a better
implementation.

Get into the habit of being constantly critical of your code. Look

for any opportunities to reorganize it to improve its structure
and orthogonality. This process is called refactoring, and it’s so
important that we’ve dedicated a section to it (see Topic 40,
Refactoring).

TESTING

An orthogonally designed and implemented system is easier to
test. Because the interactions between the system’s components
are formalized and limited, more of the system testing can be
performed at the individual module level. This is good news,
because module level (or unit) testing is considerably easier to
specify and perform than integration testing. In fact, we suggest
that these tests be performed automatically as part of the
regular build process (see Topic 41, Test to Code).

Writing unit tests is itself an interesting test of orthogonality.
What does it take to get a unit test to build and run? Do you
have to import a large percentage of the rest of the system’s
code? If so, you’ve found a module that is not well decoupled
from the rest of the system.

Bug fixing is also a good time to assess the orthogonality of the
system as a whole. When you come across a problem, assess
how localized the fix is. Do you change just one module, or are
the changes scattered throughout the entire system? When you
make a change, does it fix everything, or do other problems
mysteriously arise? This is a good opportunity to bring
automation to bear. If you use a version control system (and you
will after reading Topic 19, Version Control), tag bug fixes when
you check the code back in after testing. You can then run
monthly reports analyzing trends in the number of source files
affected by each bug fix.

DOCUMENTATION

Perhaps surprisingly, orthogonality also applies to
documentation. The axes are content and presentation. With
truly orthogonal documentation, you should be able to change
the appearance dramatically without changing the content.
Word processors provide style sheets and macros that help. We
personally prefer using a markup system such as Markdown:
when writing we focus only on the content, and leave the
presentation to whichever tool we use to render it.

LIVING WITH ORTHOGONALITY
Orthogonality is closely related to the DRY principle. With DRY,
you’re looking to minimize duplication within a system, whereas
with orthogonality you reduce the interdependency among the
system’s components. It may be a clumsy word, but if you use
the principle of orthogonality, combined closely with the DRY
principle, you’ll find that the systems you develop are more
flexible, more understandable, and easier to debug, test, and
maintain.

If you’re brought into a project where people are desperately
struggling to make changes, and where every change seems to
cause four other things to go wrong, remember the nightmare
with the helicopter. The project probably is not orthogonally
designed and coded. It’s time to refactor.

And, if you’re a helicopter pilot, don’t eat the fish….

RELATED SECTIONS INCLUDE

Topic 3, Software Entropy

Topic 8, The Essence of Good Design

[17]

Topic 11, Reversibility

Topic 28, Decoupling

Topic 31, Inheritance Tax

Topic 33, Breaking Temporal Coupling

Topic 34, Shared State Is Incorrect State

Topic 36, Blackboards

Challenges

Consider the difference between tools which have a graphical user
interface and small but combinable command-line utilities used at
shell prompts. Which set is more orthogonal, and why? Which is
easier to use for exactly the purpose for which it was intended?
Which set is easier to combine with other tools to meet new
challenges? Which set is easier to learn?

C++ supports multiple inheritance, and Java allows a class to
implement multiple interfaces. Ruby has mixins. What impact does
using these facilities have on orthogonality? Is there a difference in
impact between using multiple inheritance and multiple interfaces?
Is there a difference between using delegation and using
inheritance?

Exercises

Exercise 1 (possible answer)

You’re asked to read a file a line at a time. For each line, you
have to split it into fields. Which of the following sets of pseudo
class definitions is likely to be more orthogonal?

 class Split1 {
 constructor(fileName) # opens the file for reading
 def readNextLine() # moves to the next line
 def getField(n) # returns nth field in current line

 }

or

 class Split2 {
 constructor(line) # splits a line
 def getField(n) # returns nth field in current line
 }

Exercise 2 (possible answer)

What are the differences in orthogonality between object-
oriented and functional languages? Are these differences
inherent in the languages themselves, or just in the way people
use them?

Nothing is more
dangerous than an
idea if it’s the only one
you have.

Emil-Auguste Chartier
(Alain), Propos sur la religion,

1938

Topic 11 Reversibility

Engineers prefer simple, singular
solutions to problems. Math tests
that allow you to proclaim with
great confidence that are much
more comfortable than fuzzy,
warm essays about the myriad
causes of the French Revolution.
Management tends to agree with
the engineers: singular, easy
answers fit nicely on spreadsheets
and project plans.

If only the real world would cooperate! Unfortunately, while
is today, it may need to be tomorrow, and next week.
Nothing is forever—and if you rely heavily on some fact, you can
almost guarantee that it will change.

There is always more than one way to implement something,
and there is usually more than one vendor available to provide a
third-party product. If you go into a project hampered by the
myopic notion that there is only one way to do it, you may be in
for an unpleasant surprise. Many project teams have their eyes
forcibly opened as the future unfolds:

“But you said we’d use database XYZ! We are 85% done coding
the project, we can’t change now!” the programmer protested.
“Sorry, but our company decided to standardize on database

PDQ instead—for all projects. It’s out of my hands. We’ll just
have to recode. All of you will be working weekends until further
notice.”

Changes don’t have to be that Draconian, or even that
immediate. But as time goes by, and your project progresses,
you may find yourself stuck in an untenable position. With
every critical decision, the project team commits to a smaller
target—a narrower version of reality that has fewer options.

By the time many critical decisions have been made, the target
becomes so small that if it moves, or the wind changes direction,
or a butterfly in Tokyo flaps its wings, you miss. And you may
miss by a huge amount.

The problem is that critical decisions aren’t easily reversible.

Once you decide to use this vendor’s database, or that
architectural pattern, or a certain deployment model, you are
committed to a course of action that cannot be undone, except
at great expense.

REVERSIBILITY
Many of the topics in this book are geared to producing flexible,
adaptable software. By sticking to their recommendations—
especially the DRY principle, decoupling, and use of external
configuration—we don’t have to make as many critical,
irreversible decisions. This is a good thing, because we don’t
always make the best decisions the first time around. We
commit to a certain technology only to discover we can’t hire
enough people with the necessary skills. We lock in a certain
third-party vendor just before they get bought out by their
competitor. Requirements, users, and hardware change faster

[18]

than we can get the software developed.

Suppose you decide, early in the project, to use a relational
database from vendor A. Much later, during performance
testing, you discover that the database is simply too slow, but
that the document database from vendor B is faster. With most
conventional projects, you’d be out of luck. Most of the time,
calls to third-party products are entangled throughout the code.
But if you really abstracted the idea of a database out—to the
point where it simply provides persistence as a service—then
you have the flexibility to change horses in midstream.

Similarly, suppose the project begins as a browser-based
application, but then, late in the game, marketing decides that
what they really want is a mobile app. How hard would that be
for you? In an ideal world, it shouldn’t impact you too much, at
least on the server side. You’d be stripping out some HTML
rendering and replacing it with an API.

The mistake lies in assuming that any decision is cast in stone—
and in not preparing for the contingencies that might arise.
Instead of carving decisions in stone, think of them more as
being written in the sand at the beach. A big wave can come
along and wipe them out at any time.

Tip 18 There Are No Final Decisions

FLEXIBLE ARCHITECTURE
While many people try to keep their code flexible, you also need
to think about maintaining flexibility in the areas of
architecture, deployment, and vendor integration.

We’re writing this in 2019. Since the turn of the century we’ve
seen the following “best practice” server-side architectures:

Big hunk of iron

Federations of big iron

Load-balanced clusters of commodity hardware

Cloud-based virtual machines running applications

Cloud-based virtual machines running services

Containerized versions of the above

Cloud-supported serverless applications

And, inevitably, an apparent move back to big hunks of iron for
some tasks

Go ahead and add the very latest and greatest fads to this list,
and then regard it with awe: it’s a miracle that anything ever
worked.

How can you plan for this kind of architectural volatility? You
can’t.

What you can do is make it easy to change. Hide third-party
APIs behind your own abstraction layers. Break your code into
components: even if you end up deploying them on a single
massive server, this approach is a lot easier than taking a
monolithic application and splitting it. (We have the scars to
prove it.)

And, although this isn’t particularly a reversibility issue, one
final piece of advice.

Tip 19 Forgo Following Fads

No one knows what the future may hold, especially not us! So
enable your code to rock-n-roll: to “rock on’’ when it can, to roll
with the punches when it must.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 10, Orthogonality

Topic 19, Version Control

Topic 28, Decoupling

Topic 45, The Requirements Pit

Topic 51, Pragmatic Starter Kit

CHALLENGES

Time for a little quantum mechanics with Schrödinger’s cat.
Suppose you have a cat in a closed box, along with a radioactive
particle. The particle has exactly a 50% chance of fissioning into
two. If it does, the cat will be killed. If it doesn’t, the cat will be
okay. So, is the cat dead or alive? According to Schrödinger, the
correct answer is both (at least while the box remains closed). Every
time a subnuclear reaction takes place that has two possible
outcomes, the universe is cloned. In one, the event occurred, in the
other it didn’t. The cat’s alive in one universe, dead in another. Only
when you open the box do you know which universe you are in.
No wonder coding for the future is difficult.
But think of code evolution along the same lines as a box full of
Schrödinger’s cats: every decision results in a different version of
the future. How many possible futures can your code support?
Which ones are more likely? How hard will it be to support them
when the time comes?
Dare you open the box?

Ready, fire, aim…

Anon

Topic 12 Tracer Bullets

We often talk about hitting targets
when we develop software. We’re
not actually firing anything at the
shooting range, but it’s still a
useful and very visual metaphor.
In particular, it’s interesting to

consider how to hit a target in a complex and shifting world.

The answer, of course, depends on the nature of the device
you’re aiming with. With many you only get one chance to aim,
and then get to see if you hit the bullseye or not. But there’s a
better way.

You know all those movies, TV shows, and video games where
people are shooting machine guns? In these scenes, you’ll often
see the path of bullets as bright streaks in the air. These streaks
come from tracer bullets.

Tracer bullets are loaded at intervals alongside regular
ammunition. When they’re fired, their phosphorus ignites and
leaves a pyrotechnic trail from the gun to whatever they hit. If
the tracers are hitting the target, then so are the regular bullets.
Soldiers use these tracer rounds to refine their aim: it’s
pragmatic, real-time feedback under actual conditions.

That same principle applies to projects, particularly when you’re
building something that hasn’t been built before. We use the

term tracer bullet development to visually illustrate the need for
immediate feedback under actual conditions with a moving
goal.

Like the gunners, you’re trying to hit a target in the dark.
Because your users have never seen a system like this before,
their requirements may be vague. Because you may be using
algorithms, techniques, languages, or libraries you aren’t
familiar with, you face a large number of unknowns. And
because projects take time to complete, you can pretty much
guarantee the environment you’re working in will change before
you’re done.

The classic response is to specify the system to death. Produce
reams of paper itemizing every requirement, tying down every
unknown, and constraining the environment. Fire the gun using
dead reckoning. One big calculation up front, then shoot and
hope.

Pragmatic Programmers, however, tend to prefer using the
software equivalent of tracer bullets.

CODE THAT GLOWS IN THE DARK

Tracer bullets work because they operate in the same
environment and under the same constraints as the real bullets.
They get to the target fast, so the gunner gets immediate
feedback. And from a practical standpoint they’re a relatively
cheap solution.

To get the same effect in code, we look for something that gets
us from a requirement to some aspect of the final system
quickly, visibly, and repeatably.

Look for the important requirements, the ones that define the
system. Look for the areas where you have doubts, and where
you see the biggest risks. Then prioritize your development so
that these are the first areas you code.

Tip 20 Use Tracer Bullets to Find the Target

In fact, given the complexity of today’s project setup, with
swarms of external dependencies and tools, tracer bullets
become even more important. For us, the very first tracer bullet
is simply create the project, add a “hello world!,” and make
sure it compiles and runs. Then we look for areas of uncertainty
in the overall application and add the skeleton needed to make
it work.

Have a look at the following diagram. This system has five
architectural layers. We have some concerns about how they’d
integrate, so we look for a simple feature that lets us exercise
them together. The diagonal line shows the path that feature
takes through the code. To make it work, we just have to
implement the solidly shaded areas in each layer: the stuff with
the squiggles will be done later.

images/layer-diagram-tracer.png

We once undertook a complex client-server database marketing
project. Part of its requirement was the ability to specify and
execute temporal queries. The servers were a range of relational
and specialized databases. The client UI, written in random
language A, used a set of libraries written in a different language
to provide an interface to the servers. The user’s query was
stored on the server in a Lisp-like notation before being
converted to optimized SQL just prior to execution. There were
many unknowns and many different environments, and no one
was too sure how the UI should behave.

This was a great opportunity to use tracer code. We developed
the framework for the front end, libraries for representing the
queries, and a structure for converting a stored query into a
database-specific query. Then we put it all together and checked
that it worked. For that initial build, all we could do was submit

a query that listed all the rows in a table, but it proved that the
UI could talk to the libraries, the libraries could serialize and
unserialize a query, and the server could generate SQL from the
result. Over the following months we gradually fleshed out this
basic structure, adding new functionality by augmenting each
component of the tracer code in parallel. When the UI added a
new query type, the library grew and the SQL generation was
made more sophisticated.

Tracer code is not disposable: you write it for keeps. It contains
all the error checking, structuring, documentation, and self-
checking that any piece of production code has. It simply is not
fully functional. However, once you have achieved an end-to-
end connection among the components of your system, you can
check how close to the target you are, adjusting if necessary.
Once you’re on target, adding functionality is easy.

Tracer development is consistent with the idea that a project is
never finished: there will always be changes required and
functions to add. It is an incremental approach.

The conventional alternative is a kind of heavy engineering
approach: code is divided into modules, which are coded in a
vacuum. Modules are combined into subassemblies, which are
then further combined, until one day you have a complete
application. Only then can the application as a whole be
presented to the user and tested.

The tracer code approach has many advantages:

Users get to see something working early
If you have successfully communicated what you are
doing (see Topic 52, Delight Your Users), your users will

know they are seeing something immature. They won’t be
disappointed by a lack of functionality; they’ll be ecstatic
to see some visible progress toward their system. They
also get to contribute as the project progresses,
increasing their buy-in. These same users will likely be
the people who’ll tell you how close to the target each
iteration is.

Developers build a structure to work in
The most daunting piece of paper is the one with nothing
written on it. If you have worked out all the end-to-end
interactions of your application, and have embodied
them in code, then your team won’t need to pull as much
out of thin air. This makes everyone more productive,
and encourages consistency.

You have an integration platform
As the system is connected end-to-end, you have an
environment to which you can add new pieces of code
once they have been unit-tested. Rather than attempting
a big-bang integration, you’ll be integrating every day
(often many times a day). The impact of each new change
is more apparent, and the interactions are more limited,
so debugging and testing are faster and more accurate.

You have something to demonstrate
Project sponsors and top brass have a tendency to want
to see demos at the most inconvenient times. With tracer
code, you’ll always have something to show them.

You have a better feel for progress
In a tracer code development, developers tackle use cases
one by one. When one is done, they move to the next. It is

far easier to measure performance and to demonstrate
progress to your user. Because each individual
development is smaller, you avoid creating those
monolithic blocks of code that are reported as 95%
complete week after week.

TRACER BULLETS DON’T ALWAYS HIT THEIR
TARGET

Tracer bullets show what you’re hitting. This may not always be
the target. You then adjust your aim until they’re on target.
That’s the point.

It’s the same with tracer code. You use the technique in
situations where you’re not 100% certain of where you’re going.
You shouldn’t be surprised if your first couple of attempts miss:
the user says “that’s not what I meant,’’ or data you need isn’t
available when you need it, or performance problems seem
likely. So change what you’ve got to bring it nearer the target,
and be thankful that you’ve used a lean development
methodology; a small body of code has low inertia—it is easy
and quick to change. You’ll be able to gather feedback on your
application and generate a new, more accurate version quickly
and cheaply. And because every major application component is
represented in your tracer code, your users can be confident
that what they’re seeing is based on reality, not just a paper
specification.

TRACER CODE VERSUS PROTOTYPING
You might think that this tracer code concept is nothing more
than prototyping under an aggressive name. There is a
difference. With a prototype, you’re aiming to explore specific
aspects of the final system. With a true prototype, you will

throw away whatever you lashed together when trying out the
concept, and recode it properly using the lessons you’ve learned.

For example, say you’re producing an application that helps
shippers determine how to pack odd-sized boxes into
containers. Among other problems, the user interface needs to
be intuitive and the algorithms you use to determine optimal
packing are very complex.

You could prototype a user interface for your end users in a UI
tool. You code only enough to make the interface responsive to
user actions. Once they’ve agreed to the layout, you might throw
it away and recode it, this time with the business logic behind it,
using the target language. Similarly, you might want to
prototype a number of algorithms that perform the actual
packing. You might code functional tests in a high-level,
forgiving language such as Python, and code low-level
performance tests in something closer to the machine. In any
case, once you’d made your decision, you’d start again and code
the algorithms in their final environment, interfacing to the real
world. This is prototyping, and it is very useful.

The tracer code approach addresses a different problem. You
need to know how the application as a whole hangs together.
You want to show your users how the interactions will work in
practice, and you want to give your developers an architectural
skeleton on which to hang code. In this case, you might
construct a tracer consisting of a trivial implementation of the
container packing algorithm (maybe something like first-come,
first-served) and a simple but working user interface. Once you
have all the components in the application plumbed together,
you have a framework to show your users and your developers.
Over time, you add to this framework with new functionality,

completing stubbed routines. But the framework stays intact,
and you know the system will continue to behave the way it did
when your first tracer code was completed.

The distinction is important enough to warrant repeating.
Prototyping generates disposable code. Tracer code is lean but
complete, and forms part of the skeleton of the final system.
Think of prototyping as the reconnaissance and intelligence
gathering that takes place before a single tracer bullet is fired.

RELATED SECTIONS INCLUDE

Topic 13, Prototypes and Post-it Notes

Topic 27, Don’t Outrun Your Headlights

Topic 40, Refactoring

Topic 49, Pragmatic Teams

Topic 50, Coconuts Don’t Cut It

Topic 51, Pragmatic Starter Kit

Topic 52, Delight Your Users

Topic 13 Prototypes and Post-it Notes

Many industries use prototypes to try out specific ideas;
prototyping is much cheaper than full-scale production. Car
makers, for example, may build many different prototypes of a
new car design. Each one is designed to test a specific aspect of
the car—the aerodynamics, styling, structural characteristics,
and so on. Old school folks might use a clay model for wind
tunnel testing, maybe a balsa wood and duct tape model will do
for the art department, and so on. The less romantic will do
their modeling on a computer screen or in virtual reality,
reducing costs even further. In this way, risky or uncertain
elements can be tried out without committing to building the
real item.

We build software prototypes in the same fashion, and for the
same reasons—to analyze and expose risk, and to offer chances
for correction at a greatly reduced cost. Like the car makers, we
can target a prototype to test one or more specific aspects of a
project.

We tend to think of prototypes as code-based, but they don’t
always have to be. Like the car makers, we can build prototypes
out of different materials. Post-it notes are great for prototyping
dynamic things such as workflow and application logic. A user
interface can be prototyped as a drawing on a whiteboard, as a
nonfunctional mock-up drawn with a paint program, or with an
interface builder.

Prototypes are designed to answer just a few questions, so they
are much cheaper and faster to develop than applications that
go into production. The code can ignore unimportant details—
unimportant to you at the moment, but probably very important
to the user later on. If you are prototyping a UI, for instance,
you can get away with incorrect results or data. On the other
hand, if you’re just investigating computational or performance
aspects, you can get away with a pretty poor UI, or perhaps even
no UI at all.

But if you find yourself in an environment where you cannot
give up the details, then you need to ask yourself if you are
really building a prototype at all. Perhaps a tracer bullet style of
development would be more appropriate in this case (see Topic
12, Tracer Bullets).

THINGS TO PROTOTYPE

What sorts of things might you choose to investigate with a
prototype? Anything that carries risk. Anything that hasn’t been
tried before, or that is absolutely critical to the final system.
Anything unproven, experimental, or doubtful. Anything you
aren’t comfortable with. You can prototype:

Architecture

New functionality in an existing system

Structure or contents of external data

Third-party tools or components

Performance issues

User interface design

Prototyping is a learning experience. Its value lies not in the
code produced, but in the lessons learned. That’s really the
point of prototyping.

Tip 21 Prototype to Learn

HOW TO USE PROTOTYPES

When building a prototype, what details can you ignore?

Correctness
You may be able to use dummy data where appropriate.

Completeness
The prototype may function only in a very limited sense,
perhaps with only one preselected piece of input data and
one menu item.

Robustness
Error checking is likely to be incomplete or missing
entirely. If you stray from the predefined path, the
prototype may crash and burn in a glorious display of
pyrotechnics. That’s okay.

Style
Prototype code shouldn’t have much in the way of
comments or documentation (although you may produce
reams of documentation as a result of your experience
with the prototype).

Prototypes gloss over details, and focus in on specific aspects of
the system being considered, so you may want to implement
them using a high-level scripting language—higher than the rest

of the project (maybe a language such as Python or Ruby), as
these languages can get out of your way. You may choose to
continue to develop in the language used for the prototype, or
you can switch; after all, you’re going to throw the prototype
away anyway.

To prototype user interfaces, use a tool that lets you focus on the
appearance and/or interactions without worrying about code or
markup.

Scripting languages also work well as the “glue’’ to combine low-
level pieces into new combinations. Using this approach, you
can rapidly assemble existing components into new
configurations to see how things work.

PROTOTYPING ARCHITECTURE

Many prototypes are constructed to model the entire system
under consideration. As opposed to tracer bullets, none of the
individual modules in the prototype system need to be
particularly functional. In fact, you may not even need to code
in order to prototype architecture—you can prototype on a
whiteboard, with Post-it notes or index cards. What you are
looking for is how the system hangs together as a whole, again
deferring details. Here are some specific areas you may want to
look for in the architectural prototype:

Are the responsibilities of the major areas well defined and
appropriate?

Are the collaborations between major components well defined?

Is coupling minimized?

Can you identify potential sources of duplication?

Are interface definitions and constraints acceptable?

Does every module have an access path to the data it needs during
execution? Does it have that access when it needs it?

This last item tends to generate the most surprises and the most
valuable results from the prototyping experience.

HOW NOT TO USE PROTOTYPES

Before you embark on any code-based prototyping, make sure
that everyone understands that you are writing disposable code.
Prototypes can be deceptively attractive to people who don’t
know that they are just prototypes. You must make it very clear
that this code is disposable, incomplete, and unable to be
completed.

It’s easy to become misled by the apparent completeness of a
demonstrated prototype, and project sponsors or management
may insist on deploying the prototype (or its progeny) if you
don’t set the right expectations. Remind them that you can build
a great prototype of a new car out of balsa wood and duct tape,
but you wouldn’t try to drive it in rush-hour traffic!

If you feel there is a strong possibility in your environment or
culture that the purpose of prototype code may be
misinterpreted, you may be better off with the tracer bullet
approach. You’ll end up with a solid framework on which to
base future development.

Properly used prototypes can save you huge amounts of time,
money, and pain by identifying and correcting potential
problem spots early in the development cycle—the time when
fixing mistakes is both cheap and easy.

RELATED SECTIONS INCLUDE

Topic 12, Tracer Bullets

Topic 14, Domain Languages

Topic 17, Shell Games

Topic 27, Don’t Outrun Your Headlights

Topic 37, Listen to Your Lizard Brain

Topic 45, The Requirements Pit

Topic 52, Delight Your Users

EXERCISES

Exercise 3 (possible answer)

Marketing would like to sit down and brainstorm a few web
page designs with you. They are thinking of clickable image
maps to take you to other pages, and so on. But they can’t
decide on a model for the image—maybe it’s a car, or a phone,
or a house. You have a list of target pages and content; they’d
like to see a few prototypes. Oh, by the way, you have 15
minutes. What tools might you use?

The limits of language
are the limits of one’s
world.

Ludwig Wittgenstein

Topic 14 Domain Languages

Computer languages influence
how you think about a problem,
and how you think about
communicating. Every language
comes with a list of features:
buzzwords such as static versus
dynamic typing, early versus late
binding, functional versus OO,
inheritance models, mixins,

macros—all of which may suggest or obscure certain solutions.
Designing a solution with C++ in mind will produce different
results than a solution based on Haskell-style thinking, and vice
versa. Conversely, and we think more importantly, the language
of the problem domain may also suggest a programming
solution.

We always try to write code using the vocabulary of the
application domain (see Maintain a Glossary). In some cases,
Pragmatic Programmers can go to the next level and actually
program using the vocabulary, syntax, and semantics—the
language—of the domain.

Tip 22 Program Close to the Problem Domain

SOME REAL-WORLD DOMAIN LANGUAGES

Let’s look at a few examples where folks have done just that.

RSpec

RSpec is a testing library for Ruby. It inspired versions for
most other modern languages. A test in RSpec is intended to
reflect the behavior you expect from your code.

 describe BowlingScore do
 it "totals 12 if you score 3 four times" do
 score = BowlingScore.new
 4.times { score.add_pins(3) }
 expect(score.total).to eq(12)
 end
 end

Cucumber

Cucumber is programming-language neutral way of
specifying tests. You run the tests using a version of Cucumber
appropriate to the language you’re using. In order to support
the natural-language like syntax, you also have to write specific
matchers that recognize phrases and extract parameters for the
tests.

 Feature: Scoring

 Background:
 Given an empty scorecard

 Scenario: bowling a lot of 3s
 Given I throw a 3
 And I throw a 3
 And I throw a 3
 And I throw a 3
 Then the score should be 12

Cucumber tests were intended to be read by the customers of
the software (although that happens fairly rarely in practice; the
following aside considers why that might be).

Why Don't Many Business Users Read Cucumber Features?

[19]

[20]

One of the reasons that the classic gather requirements, design, code, ship approach
doesn’t work is that it is anchored by the concept that we know what the requirements
are. But we rarely do. Your business users will have a vague idea of what they want to
achieve, but they neither know nor care about the details. That’s part of our value: we
intuit intent and convert it to code.

So when you force a business person to sign off on a requirements document, or get
them to agree to a set of Cucumber features, you’re doing the equivalent of getting
them to check the spelling in an essay written in Sumerian. They’ll make some random
changes to save face and sign it off to get you out of their office.

Give them code that runs, however, and they can play with it. That’s where their real
needs will surface.

Phoenix Routes

Many web frameworks have a routing facility, mapping
incoming HTTP requests onto handler functions in the code.
Here’s an example from Phoenix.

 scope "/", HelloPhoenix do
 pipe_through :browser # Use the default browser stack

 get "/", PageController, :index
 resources "/users", UserController
 end

This says that requests starting “/” will be run through a series
of filters appropriate for browsers. A request to “/” itself will be
handled by the index function in the PageController module. The
UsersController implements the functions needed to manage a
resource accessible via the url /users.

Ansible

Ansible is a tool that configures software, typically on a bunch
of remote servers. It does this by reading a specification that
you provide, then doing whatever is needed on the servers to
make them mirror that spec. The specification can be written in
YAML, a language that builds data structures from text

[21]

[22]

[23]

descriptions:

 - name: install nginx
 apt: name=nginx state=latest

 - name: ensure nginx is running (and enable it at boot)
 service: name=nginx state=started enabled=yes

 - name: write the nginx config file
 template: src=templates/nginx.conf.j2 dest=/etc/nginx/nginx.conf
 notify:
 - restart nginx

This example ensures that the latest version of nginx is installed
on my servers, that it is started by default, and that it uses a
configuration file that you’ve provided.

CHARACTERISTICS OF DOMAIN LANGUAGES
Let’s look at these examples more closely.

RSpec and the Phoenix router are written in their host
languages (Ruby and Elixir). They employ some fairly devious
code, including metaprogramming and macros, but ultimately
they are compiled and run as regular code.

Cucumber tests and Ansible configurations are written in their
own languages. A Cucumber test is converted into code to be
run or into a datastructure, whereas Ansible specs are always
converted into a data structure that is run by Ansible itself.

As a result, RSpec and the router code are embedded into the
code you run: they are true extensions to your code’s
vocabulary. Cucumber and Ansible are read by code and
converted into some form the code can use.

We call RSpec and the router examples of internal domain
languages, while Cucumber and Ansible use external languages.

TRADE-OFFS BETWEEN INTERNAL AND EXTERNAL
LANGUAGES

In general, an internal domain language can take advantage of
the features of its host language: the domain language you
create is more powerful, and that power comes for free. For
example, you could use some Ruby code to create a bunch of
RSpec tests automatically. In this case we can test scores where
there are no spares or strikes:

 describe BowlingScore do
 (0..4).each do |pins|
 (1..20).each do |throws|
 target = pins * throws

 it "totals #{target} if you score #{pins} #{throws} times" do
 score = BowlingScore.new
 throws.times { score.add_pins(pins) }
 expect(score.total).to eq(target)
 end
 end
 end
 end

That’s 100 tests you just wrote. Take the rest of the day off.

The downside of internal domain languages is that you’re bound
by the syntax and semantics of that language. Although some
languages are remarkably flexible in this regards, you’re still
forced to compromise between the language you want and the
language you can implement.

Ultimately, whatever you come up with must still be valid
syntax in your target language. Languages with macros (such as

Elixir, Clojure, and Crystal) gives you a little more flexibility,
but ultimately syntax is syntax.

External languages have no such restrictions. As long as you can
write a parser for the language, you’re good to go. Sometimes
you can use someone else’s parser (as Ansible did by using
YAML), but then you’re back to making a compromise.

Writing a parser probably means adding new libraries and
possibly tools to your application. And writing a good parser is
not a trivial job. But, if you’re feeling stout of heart, you could
look at parser generators such as bison or ANTLR, and parsing
frameworks such as the many PEG parsers out there.

Our suggestion is fairly simple: don’t spend more effort than
you save. Writing a domain language adds some cost to your
project, and you’ll need to be convinced that there are offsetting
savings (potentially in the long term).

In general, use off-the-shelf external languages (such as YAML,
JSON, or CSV) if you can. If not, look at internal languages.
We’d recommend using external languages only in cases where
your language will be written by the users of your application.

AN INTERNAL DOMAIN LANGUAGE ON THE CHEAP
Finally, there’s a cheat for creating internal domain languages if
you don’t mind the host language syntax leaking through. Don’t
do a bunch of metaprogramming. Instead, just write functions
to do the work. In fact, this is pretty much what RSpec does:

 describe BowlingScore do
 it "totals 12 if you score 3 four times" do
 score = BowlingScore.new
 4.times { score.add_pins(3) }

 expect(score.total).to eq(12)
 end
 end

In this code, describe, it, expect, to, and eq are just Ruby methods.
There’s a little plumbing behind the scenes in terms of how
objects are passed around, but it’s all just code. We’ll explore
that a little in the exercises.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 13, Prototypes and Post-it Notes

Topic 32, Configuration

CHALLENGES

Could some of the requirements of your current project be
expressed in a domain-specific language? Would it be possible to
write a compiler or translator that could generate most of the code
required?

If you decide to adopt mini-languages as a way of programming
closer to the problem domain, you’re accepting that some effort will
be required to implement them. Can you see ways in which the
framework you develop for one project can be reused in others?

EXERCISES

Exercise 4 (possible answer)

We want to implement a mini-language to control a simple
turtle-graphics system. The language consists of single-letter
commands, some followed by a single number. For example, the
following input would draw a rectangle:

 P 2 # select pen 2
 D # pen down
 W 2 # draw west 2cm
 N 1 # then north 1
 E 2 # then east 2
 S 1 # then back south
 U # pen up

Implement the code that parses this language. It should be
designed so that it is simple to add new commands.

Exercise 5 (possible answer)

In the previous exercise we implemented a parser for the
drawing language—it was an external domain language. Now
implement it again as an internal language. Don’t do anything
clever: just write a function for each of the commands. You may
have to change the names of the commands to lower case, and
maybe to wrap them inside something to provide some context.

Exercise 6 (possible answer)

Design a BNF grammar to parse a time specification. All of the
following examples should be accepted:

 4pm, 7:38pm, 23:42, 3:16, 3:16am

Exercise 7 (possible answer)

Implement a parser for the BNF grammar in the previous
exercise using a PEG parser generator in the language of your
choice. The output should be an integer containing the number
of minutes past midnight.

Exercise 8 (possible answer)

Implement the time parser using a scripting language and
regular expressions.

Topic 15 Estimating

The Library of Congress in Washington, DC, currently has about
75 terabytes of digital information online. Quick! How long will
it take to send all that information over a 1Gbps network? How
much storage will you need for a million names and addresses?
How long does it take to compress 100Mb of text? How many
months will it take to deliver your project?

At one level, these are all meaningless questions—they are all
missing information. And yet they can all be answered, as long
as you are comfortable estimating. And, in the process of
producing an estimate, you’ll come to understand more about
the world your programs inhabit.

By learning to estimate, and by developing this skill to the point
where you have an intuitive feel for the magnitudes of things,
you will be able to show an apparent magical ability to
determine their feasibility. When someone says “we’ll send the
backup over a network connection to S3,” you’ll be able to know
intuitively whether this is practical. When you’re coding, you’ll
be able to know which subsystems need optimizing and which
ones can be left alone.

Tip 23 Estimate to Avoid Surprises

As a bonus, at the end of this section we’ll reveal the single
correct answer to give whenever anyone asks you for an
estimate.

HOW ACCURATE IS ACCURATE ENOUGH?

To some extent, all answers are estimates. It’s just that some are
more accurate than others. So the first question you have to ask
yourself when someone asks you for an estimate is the context
in which your answer will be taken. Do they need high accuracy,
or are they looking for a ballpark figure?

One of the interesting things about estimating is that the units
you use make a difference in the interpretation of the result. If
you say that something will take about 130 working days, then
people will be expecting it to come in pretty close. However, if
you say “Oh, about six months,” then they know to look for it
any time between five and seven months from now. Both
numbers represent the same duration, but “130 days” probably
implies a higher degree of accuracy than you feel. We
recommend that you scale time estimates as follows:

Duration Quote estimate in

1–15 days Days

3–6 weeks Weeks

8–20 weeks Months

20+ weeks Think hard before giving an estimate

So, if after doing all the necessary work, you decide that a
project will take 125 working days (25 weeks), you might want

to deliver an estimate of “about six months.”

The same concepts apply to estimates of any quantity: choose
the units of your answer to reflect the accuracy you intend to
convey.

WHERE DO ESTIMATES COME FROM?

All estimates are based on models of the problem. But before we
get too deeply into the techniques of building models, we have
to mention a basic estimating trick that always gives good
answers: ask someone who’s already done it. Before you get too
committed to model building, cast around for someone who’s
been in a similar situation in the past. See how their problem
got solved. It’s unlikely you’ll ever find an exact match, but
you’d be surprised how many times you can successfully draw
on others’ experiences.

Understand What’s Being Asked

The first part of any estimation exercise is building an
understanding of what’s being asked. As well as the accuracy
issues discussed above, you need to have a grasp of the scope of
the domain. Often this is implicit in the question, but you need
to make it a habit to think about the scope before starting to
guess. Often, the scope you choose will form part of the answer
you give: “Assuming there are no traffic accidents and there’s
gas in the car, I should be there in 20 minutes.”

Build a Model of the System

This is the fun part of estimating. From your understanding of
the question being asked, build a rough-and-ready bare-bones
mental model. If you’re estimating response times, your model
may involve a server and some kind of arriving traffic. For a
project, the model may be the steps that your organization uses

during development, along with a very rough picture of how the
system might be implemented.

Model building can be both creative and useful in the long term.
Often, the process of building the model leads to discoveries of
underlying patterns and processes that weren’t apparent on the
surface. You may even want to reexamine the original question:
“You asked for an estimate to do X. However, it looks like Y, a
variant of X, could be done in about half the time, and you lose
only one feature.”

Building the model introduces inaccuracies into the estimating
process. This is inevitable, and also beneficial. You are trading
off model simplicity for accuracy. Doubling the effort on the
model may give you only a slight increase in accuracy. Your
experience will tell you when to stop refining.

Break the Model into Components

Once you have a model, you can decompose it into components.
You’ll need to discover the mathematical rules that describe
how these components interact. Sometimes a component
contributes a single value that is added into the result. Some
components may supply multiplying factors, while others may
be more complicated (such as those that simulate the arrival of
traffic at a node).

You’ll find that each component will typically have parameters
that affect how it contributes to the overall model. At this stage,
simply identify each parameter.

Give Each Parameter a Value

Once you have the parameters broken out, you can go through
and assign each one a value. You expect to introduce some

errors in this step. The trick is to work out which parameters
have the most impact on the result, and concentrate on getting
them about right. Typically, parameters whose values are added
into a result are less significant than those that are multiplied or
divided. Doubling a line speed may double the amount of data
received in an hour, while adding a 5ms transit delay will have
no noticeable effect.

You should have a justifiable way of calculating these critical
parameters. For the queuing example, you might want to
measure the actual transaction arrival rate of the existing
system, or find a similar system to measure. Similarly, you
could measure the current time taken to serve a request, or
come up with an estimate using the techniques described in this
section. In fact, you’ll often find yourself basing an estimate on
other subestimates. This is where your largest errors will creep
in.

Calculate the Answers

Only in the simplest of cases will an estimate have a single
answer. You might be happy to say “I can walk five cross-town
blocks in 15 minutes.” However, as the systems get more
complex, you’ll want to hedge your answers. Run multiple
calculations, varying the values of the critical parameters, until
you work out which ones really drive the model. A spreadsheet
can be a big help. Then couch your answer in terms of these
parameters. “The response time is roughly three quarters of a
second if the system has SSDs and 32GB of memory, and one
second with 16GB memory.” (Notice how “three quarters of a
second” conveys a different feeling of accuracy than 750ms.)

During the calculation phase, you get answers that seem
strange. Don’t be too quick to dismiss them. If your arithmetic

is correct, your understanding of the problem or your model is
probably wrong. This is valuable information.

Keep Track of Your Estimating Prowess

We think it’s a great idea to record your estimates so you can see
how close you were. If an overall estimate involved calculating
subestimates, keep track of these as well. Often you’ll find your
estimates are pretty good—in fact, after a while, you’ll come to
expect this.

When an estimate turns out wrong, don’t just shrug and walk
away—find out why. Maybe you chose some parameters that
didn’t match the reality of the problem. Maybe your model was
wrong. Whatever the reason, take some time to uncover what
happened. If you do, your next estimate will be better.

ESTIMATING PROJECT SCHEDULES

Normally you’ll be asked to estimate how long something will
take. If that “something” is complex, the estimate can be very
difficult to produce. In this section, we’ll look at two techniques
for reducing that uncertainty.

Painting the Missile

“How long will it take to paint the house?”

“Well, if everything goes right, and this paint has the coverage
they claim, it might be as few as 10 hours. But that’s unlikely:
I’d guess a more realistic figure is closer to 18 hours. And, of
course, if the weather turns bad, that could push it out to 30 or
more.”

That’s how people estimate in the real world. Not with a single

number (unless you force them to give you one) but with a
range of scenarios.

When the U.S. Navy needed to plan the Polaris submarine
project, they adopted this style of estimating with a
methodology they called the Program Evaluation Review
Technique, or PERT.

Every PERT task has an optimistic, a most likely, and a
pessimistic estimate. The tasks are arranged into a dependency
network, and then you use some simple statistics to identify
likely best and worst times for the overall project.

Using a range of values like this is a great way to avoid one of
the most common causes of estimation error: padding a number
because you’re unsure. Instead, the statistics behind PERT
spreads the uncertainty out for you, giving you better
estimations of the whole project.

However, we’re not big fans of this. People tend to produce wall-
sized charts of all the tasks in a project, and implicitly believe
that, just because they used a formula, they have an accurate
estimate. The chances are they don’t, because they have never
done this before.

Eating the Elephant

We find that often the only way to determine the timetable for a
project is by gaining experience on that same project. This
needn’t be a paradox if you practice incremental development,
repeating the following steps with very thin slices of
functionality:

Check requirements

Analyze risk (and prioritize riskiest items earlier)

Design, implement, integrate

Validate with the users

Initially, you may have only a vague idea of how many iterations
will be required, or how long they may be. Some methods
require you to nail this down as part of the initial plan; however,
for all but the most trivial of projects this is a mistake. Unless
you are doing an application similar to a previous one, with the
same team and the same technology, you’d just be guessing.

So you complete the coding and testing of the initial
functionality and mark this as the end of the first iteration.
Based on that experience, you can refine your initial guess on
the number of iterations and what can be included in each. The
refinement gets better and better each time, and confidence in
the schedule grows along with it. This kind of estimating is often
done during the team’s review at the end of each iterative cycle.

That’s also how the old joke says to eat an elephant: one bite at a
time.

Tip 24 Iterate the Schedule with the Code

This may not be popular with management, who typically want
a single, hard-and-fast number before the project even starts.
You’ll have to help them understand that the team, their
productivity, and the environment will determine the schedule.
By formalizing this, and refining the schedule as part of each
iteration, you’ll be giving them the most accurate scheduling
estimates you can.

WHAT TO SAY WHEN ASKED FOR AN ESTIMATE

You say “I’ll get back to you.”

You almost always get better results if you slow the process
down and spend some time going through the steps we describe
in this section. Estimates given at the coffee machine will (like
the coffee) come back to haunt you.

RELATED SECTIONS INCLUDE

Topic 7, Communicate!

Topic 39, Algorithm Speed

CHALLENGES

Start keeping a log of your estimates. For each, track how accurate
you turned out to be. If your error was greater than 50%, try to find
out where your estimate went wrong.

EXERCISES

Exercise 9 (possible answer)

You are asked “Which has a higher bandwidth: a 1Gbps net
connection or a person walking between two computers with a
full 1TB of storage device in their pocket?’’ What constraints will
you put on your answer to ensure that the scope of your
response is correct? (For example, you might say that the time
taken to access the storage device is ignored.)

Exercise 10 (possible answer)

So, which has the higher bandwidth?

Copyright © 2020 Pearson Education, Inc.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Footnotes

To paraphrase the old Arlen/Mercer song…

Or, perhaps, to keep your sanity, every 10th time…

https://github.com/OAI/OpenAPI-Specification

In reality, this is naive. Unless you are remarkably lucky, most real-world requirements
changes will affect multiple functions in the system. However, if you analyze the change
in terms of functions, each functional change should still ideally affect just one module.

In fact, this book is written in Markdown, and typeset directly from the Markdown
source.

Take a nonlinear, or chaotic, system and apply a small change to one of its inputs. You
may get a large and often unpredictable result. The clichéd butterfly flapping its wings
in Tokyo could be the start of a chain of events that ends up generating a tornado in
Texas. Does this sound like any projects you know?

https://rspec.info

https://cucumber.io/

https://phoenixframework.org/

https://www.ansible.com/

https://yaml.org/

Chapter 3

The Basic Tools

Every maker starts their journey with a basic set of good-quality
tools. A woodworker might need rules, gauges, a couple of saws,
some good planes, fine chisels, drills and braces, mallets, and
clamps. These tools will be lovingly chosen, will be built to last,
will perform specific jobs with little overlap with other tools,
and, perhaps most importantly, will feel right in the budding
woodworker’s hands.

Then begins a process of learning and adaptation. Each tool will
have its own personality and quirks, and will need its own
special handling. Each must be sharpened in a unique way, or
held just so. Over time, each will wear according to use, until the
grip looks like a mold of the woodworker’s hands and the
cutting surface aligns perfectly with the angle at which the tool
is held. At this point, the tools become conduits from the
maker’s brain to the finished product—they have become
extensions of their hands. Over time, the woodworker will add
new tools, such as biscuit cutters, laser-guided miter saws,
dovetail jigs—all wonderful pieces of technology. But you can
bet that they’ll be happiest with one of those original tools in
hand, feeling the plane sing as it slides through the wood.

Tools amplify your talent. The better your tools, and the better

you know how to use them, the more productive you can be.
Start with a basic set of generally applicable tools. As you gain
experience, and as you come across special requirements, you’ll
add to this basic set. Like the maker, expect to add to your
toolbox regularly. Always be on the lookout for better ways of
doing things. If you come across a situation where you feel your
current tools can’t cut it, make a note to look for something
different or more powerful that would have helped. Let need
drive your acquisitions.

Many new programmers make the mistake of adopting a single
power tool, such as a particular integrated development
environment (IDE), and never leave its cozy interface. This
really is a mistake. You need to be comfortable beyond the
limits imposed by an IDE. The only way to do this is to keep the
basic tool set sharp and ready to use.

In this chapter we’ll talk about investing in your own basic
toolbox. As with any good discussion on tools, we’ll start (in
Topic 16, The Power of Plain Text) by looking at your raw
materials, the stuff you’ll be shaping. From there we’ll move to
the workbench, or in our case the computer. How can you use
your computer to get the most out of the tools you use? We’ll
discuss this in Topic 17, Shell Games. Now that we have
material and a bench to work on, we’ll turn to the tool you’ll
probably use more than any other, your editor. In Topic 18,
Power Editing, we’ll suggest ways of making you more efficient.

To ensure that we never lose any of our precious work, we
should always use a Topic 19, Version Control system—even for
personal things such as recipes or notes. And, since Murphy was
really an optimist after all, you can’t be a great programmer
until you become highly skilled at Topic 20, Debugging.

You’ll need some glue to bind much of the magic together. We
discuss some possibilities in Topic 21, Text Manipulation.

Finally, the palest ink is still better than the best memory. Keep
track of your thoughts and your history, as we describe in Topic
22, Engineering Daybooks.

Spend time learning to use these tools, and at some point you’ll
be surprised to discover your fingers moving over the keyboard,
manipulating text without conscious thought. The tools will
have become extensions of your hands.

Topic 16 The Power of Plain Text

As Pragmatic Programmers, our base material isn’t wood or
iron, it’s knowledge. We gather requirements as knowledge, and
then express that knowledge in our designs, implementations,
tests, and documents. And we believe that the best format for
storing knowledge persistently is plain text. With plain text, we
give ourselves the ability to manipulate knowledge, both
manually and programmatically, using virtually every tool at
our disposal.

The problem with most binary formats is that the context
necessary to understand the data is separate from the data
itself. You are artificially divorcing the data from its meaning.
The data may as well be encrypted; it is absolutely meaningless
without the application logic to parse it. With plain text,
however, you can achieve a self-describing data stream that is
independent of the application that created it.

WHAT IS PLAIN TEXT?

Plain text is made up of printable characters in a form that
conveys information. It can be as simple as a shopping list:

 * milk
 * lettuce
 * coffee

or as complex as the source of this book (yes, it’s in plain text,
much to the chagrin of the publisher, who wanted us to use a
word processor).

The information part is important. The following is not useful
plain text:

 hlj;uijn bfjxrrctvh jkni'pio6p7gu;vh bjxrdi5rgvhj

Neither is this:

 Field19=467abe

The reader has no idea what the significance of 467abe may be.
We like our plain text to be understandable to humans.

Tip 25 Keep Knowledge in Plain Text

THE POWER OF TEXT

Plain text doesn’t mean that the text is unstructured; HTML,
JSON, YAML, and so on are all plain text. So are the majority of
the fundamental protocols on the net, such as HTTP, SMTP,
IMAP, and so on. And that’s for some good reasons:

Insurance against obsolescence

Leverage existing tools

Easier testing

Insurance Against Obsolescence

Human-readable forms of data, and self-describing data, will
outlive all other forms of data and the applications that created
them. Period. As long as the data survives, you will have a
chance to be able to use it—potentially long after the original
application that wrote it is defunct.

You can parse such a file with only partial knowledge of its

format; with most binary files, you must know all the details of
the entire format in order to parse it successfully.

Consider a data file from some legacy system that you are given.
 You know little about the original application; all that’s

important to you is that it maintained a list of clients’ Social
Security numbers, which you need to find and extract. Among
the data, you see

 <FIELD10>123-45-6789</FIELD10>
 ...
 <FIELD10>567-89-0123</FIELD10>
 ...
 <FIELD10>901-23-4567</FIELD10>

Recognizing the format of a Social Security number, you can
quickly write a small program to extract that data—even if you
have no information on anything else in the file.

But imagine if the file had been formatted this way instead:

 AC27123456789B11P
 ...
 XY43567890123QTYL
 ...
 6T2190123456788AM

You may not have recognized the significance of the numbers
quite as easily. This is the difference between human readable
and human understandable.

While we’re at it, FIELD10 doesn’t help much either. Something
like

 <SOCIAL-SECURITY-NO>123-45-6789</SOCIAL-SECURITY-NO>

makes the exercise a no-brainer—and ensures that the data will

[24]

outlive any project that created it.

Leverage

Virtually every tool in the computing universe, from version
control systems to editors to command-line tools, can operate
on plain text.

The Unix Philosophy

Unix is famous for being designed around the philosophy of small, sharp tools, each
intended to do one thing well. This philosophy is enabled by using a common
underlying format—the line-oriented, plain-text file. Databases used for system
administration (users and passwords, networking configuration, and so on) are all kept
as plain-text files. (Some systems also maintain a binary form of certain databases as a
performance optimization. The plain-text version is kept as an interface to the binary
version.)

When a system crashes, you may be faced with only a minimal environment to restore
it (you may not be able to access graphics drivers, for instance). Situations such as this
can really make you appreciate the simplicity of plain text.

Plain text is also easier to search. If you can’t remember which configuration file
manages your system backups, a quick grep -r backup /etc should tell you.

For instance, suppose you have a production deployment of a
large application with a complex site-specific configuration file.
If this file is in plain text, you could place it under a version
control system (see Topic 19, Version Control), so that you
automatically keep a history of all changes. File comparison
tools such as diff and fc allow you to see at a glance what changes
have been made, while sum allows you to generate a checksum to
monitor the file for accidental (or malicious) modification.

Easier Testing

If you use plain text to create synthetic data to drive system
tests, then it is a simple matter to add, update, or modify the
test data without having to create any special tools to do so.

Similarly, plain-text output from regression tests can be trivially
analyzed with shell commands or a simple script.

LOWEST COMMON DENOMINATOR

Even in the future of blockchain-based intelligent agents that
travel the wild and dangerous internet autonomously,
negotiating data interchange among themselves, the ubiquitous
text file will still be there. In fact, in heterogeneous
environments the advantages of plain text can outweigh all of
the drawbacks. You need to ensure that all parties can
communicate using a common standard. Plain text is that
standard.

RELATED SECTIONS INCLUDE

Topic 17, Shell Games

Topic 21, Text Manipulation

Topic 32, Configuration

CHALLENGES

Design a small address book database (name, phone number, and
so on) using a straightforward binary representation in your
language of choice. Do this before reading the rest of this challenge.

Translate that format into a plain-text format using XML or
JSON.

For each version, add a new, variable-length field called
directions in which you might enter directions to each
person’s house.

What issues come up regarding versioning and extensibility? Which

form was easier to modify? What about converting existing data?

Topic 17 Shell Games

Every woodworker needs a good, solid, reliable workbench,
somewhere to hold work pieces at a convenient height while
they’re being shaped. The workbench becomes the center of the
woodshop, the maker returning to it time and time again as a
piece takes shape.

For a programmer manipulating files of text, that workbench is
the command shell. From the shell prompt, you can invoke your
full repertoire of tools, using pipes to combine them in ways
never dreamt of by their original developers. From the shell, you
can launch applications, debuggers, browsers, editors, and
utilities. You can search for files, query the status of the system,
and filter output. And by programming the shell, you can build
complex macro commands for activities you perform often.

For programmers raised on GUI interfaces and integrated
development environments (IDEs), this might seem an extreme
position. After all, can’t you do everything equally well by
pointing and clicking?

The simple answer is “no.’’ GUI interfaces are wonderful, and
they can be faster and more convenient for some simple
operations. Moving files, reading and writing email, and
building and deploying your project are all things that you
might want to do in a graphical environment. But if you do all
your work using GUIs, you are missing out on the full
capabilities of your environment. You won’t be able to automate

common tasks, or use the full power of the tools available to
you. And you won’t be able to combine your tools to create
customized macro tools. A benefit of GUIs is WYSIWYG—
what you see is what you get. The disadvantage is WYSIAYG—
what you see is all you get.

GUI environments are normally limited to the capabilities that
their designers intended. If you need to go beyond the model
the designer provided, you are usually out of luck—and more
often than not, you do need to go beyond the model. Pragmatic
Programmers don’t just cut code, or develop object models, or
write documentation, or automate the build process—we do all
of these things. The scope of any one tool is usually limited to
the tasks that the tool is expected to perform. For instance,
suppose you need to integrate a code preprocessor (to
implement design-by-contract, or multi-processing pragmas, or
some such) into your IDE. Unless the designer of the IDE
explicitly provided hooks for this capability, you can’t do it.

Tip 26 Use the Power of Command Shells

Gain familiarity with the shell, and you’ll find your productivity
soaring. Need to create a list of all the unique package names
explicitly imported by your Java code? The following stores it in
a file called “list’’:

sh/packages.sh

 grep '^import ' *.java |
 sed -e's/.*import *//' -e's/;.*$//' |
 sort -u >list

If you haven’t spent much time exploring the capabilities of the
command shell on the systems you use, this might appear

daunting. However, invest some energy in becoming familiar
with your shell and things will soon start falling into place. Play
around with your command shell, and you’ll be surprised at how
much more productive it makes you.

A SHELL OF YOUR OWN

In the same way that a woodworker will customize their
workspace, a developer should customize their shell. This
typically also involves changing the configuration of the
terminal program you use.

Common changes include:

Setting color themes. Many, many hours can be spent trying out
every single theme that’s available online for your particular shell.

Configuring a prompt. The prompt that tells you the shell is ready
for you to type a command can be configured to display just about
any information you might want (and a bunch of stuff you’d never
want). Personal preferences are everything here: we tend to like
simple prompts, with a shortened current directory name and
version control status along with the time.

Aliases and shell functions. Simplify your workflow by turning
commands you use a lot into simple aliases. Maybe you regularly
update your Linux box, but can never remember whether you
update and upgrade, or upgrade and update. Create an alias:

 alias apt-up='sudo apt-get update && sudo apt-get upgrade'

Maybe you’ve accidentally deleted files with the rm command just
one time too often. Write an alias so that it will always prompt in
future:

 alias rm ='rm -iv'

Command completion. Most shells will complete the names of
commands and files: type the first few characters, hit tab, and it’ll
fill in what it can. But you can take this a lot further, configuring the

shell to recognize the command you’re entering and offer context-
specific completions. Some even customize the completion
depending on the current directory.

You’ll spend a lot of time living in one of these shells. Be like a
hermit crab and make it your own home.

RELATED SECTIONS INCLUDE

Topic 13, Prototypes and Post-it Notes

Topic 16, The Power of Plain Text

Topic 21, Text Manipulation

Topic 30, Transforming Programming

Topic 51, Pragmatic Starter Kit

CHALLENGES

Are there things that you’re currently doing manually in a GUI? Do
you ever pass instructions to colleagues that involve a number of
individual “click this button,” “select this item” steps? Could these
be automated?

Whenever you move to a new environment, make a point of finding
out what shells are available. See if you can bring your current shell
with you.

Investigate alternatives to your current shell. If you come across a
problem your shell can’t address, see if an alternative shell would
cope better.

Topic 18 Power Editing

We’ve talked before about tools being an extension of your
hand. Well, this applies to editors more than to any other
software tool. You need to be able to manipulate text as
effortlessly as possible, because text is the basic raw material of
programming.

In the first edition of this book we recommended using a single
editor for everything: code, documentation, memos, system
administration, and so on. We’ve softened that position a little.
We’re happy for you to use as many editors as you want. We’d
just like you to be working toward fluency in each.

Tip 27 Achieve Editor Fluency

Why is this a big deal? Are we saying you’ll save lots of time?
Actually yes: over the course of a year, you might actually gain
an additional week if you make your editing just 4% more
efficient and you edit for 20 hours a week.

But that’s not the real benefit. No, the major gain is that by
becoming fluent, you no longer have to think about the
mechanics of editing. The distance between thinking something
and having it appear in an editor buffer drop way down. Your
thoughts will flow, and your programming will benefit. (If
you’ve ever taught someone to drive, then you’ll understand the
difference between someone who has to think about every
action they take and a more experienced driver who controls the

car instinctively.)

WHAT DOES “FLUENT” MEAN?

What counts as being fluent? Here’s the challenge list:

When editing text, move and make selections by character, word,
line, and paragraph.

When editing code, move by various syntactic units (matching
delimiters, functions, modules, …).

Reindent code following changes.

Comment and uncomment blocks of code with a single command.

Undo and redo changes.

Split the editor window into multiple panels, and navigate between
them.

Navigate to a particular line number.

Sort selected lines.

Search for both strings and regular expressions, and repeat
previous searches.

Temporarily create multiple cursors based on a selection or on a
pattern match, and edit the text at each in parallel.

Display compilation errors in the current project.

Run the current project’s tests.

Can you do all this without using a mouse/trackpad?

You might say that your current editor can’t do some of these
things. Maybe it’s time to switch?

MOVING TOWARD FLUENCY

We doubt there are more than a handful of people who know all
the commands in any particular powerful editor. We don’t
expect you to, either. Instead, we suggest a more pragmatic
approach: learn the commands that make your life easier.

The recipe for this is fairly simple.

First, look at yourself while you’re editing. Every time you find
yourself doing something repetitive, get into the habit of
thinking “there must be a better way.” Then find it.

Once you’ve discovered a new, useful feature, you now need to
get it installed into your muscle memory, so you can use it
without thinking. The only way we know to do that is through
repetition. Consciously look for opportunities to use your new
superpower, ideally many times a day. After a week or so, you’ll
find you use it without thinking.

Growing Your Editor

Most of the powerful code editors are built around a basic core
that is then augmented through extensions. Many are supplied
with the editor, and others can be added later.

When you bump into some apparent limitation of the editor
you’re using, search around for an extension that will do the job.
The chances are that you are not alone in needing that
capability, and if you’re lucky someone else will have published
their solution.

Take this a step further. Dig into your editor’s extension
language. Work out how to use it to automate some of the
repetitive things you do. Often you’ll just need a line or two of
code.

Sometimes you might take it further still, and you’ll find
yourself writing a full-blown extension. If so, publish it: if you
had a need for it, other people will, too.

RELATED SECTIONS INCLUDE

Topic 7, Communicate!

CHALLENGES

No more autorepeat.
Everyone does it: you need to delete the last word you typed, so you
press down on backspace and wait for autorepeat to kick in. In fact,
we bet that your brain has done this so much that you can judge
pretty much exactly when to release the key.
So turn off autorepeat, and instead learn the key sequences to
move, select, and delete by characters, words, lines, and blocks.

This one is going to hurt.
Lose the mouse/trackpad. For one whole week, edit using just the
keyboard. You’ll discover a bunch of stuff that you can’t do without
pointing and clicking, so now’s the time to learn. Keep notes (we
recommend going old-school and using pencil and paper) of the key
sequences you learn.
You’ll take a productivity hit for a few days. But, as you learn to do
stuff without moving your hands away from the home position,
you’ll find that your editing becomes faster and more fluent than it
ever was in the past.

Look for integrations. While writing this chapter, Dave wondered if
he could preview the final layout (a PDF file) in an editor buffer.
One download later, the layout is sitting alongside the original text,
all in the editor. Keep a list of things you’d like to bring into your
editor, then look for them.

Somewhat more ambitiously, if you can’t find a plugin or extension
that does what you want, write one. Andy is fond of making custom,
local file-based Wiki plugins for his favorite editors. If you can’t

find it, build it!

Progress, far from
consisting in change,
depends on
retentiveness. Those
who cannot remember
the past are
condemned to repeat
it.

George Santayana, Life of
Reason

Topic 19 Version Control

One of the important things we
look for in a user interface is the
undo key—a single button that

forgives us our mistakes. It’s even
better if the environment supports
multiple levels of undo and redo,
so you can go back and recover
from something that happened a
couple of minutes ago.

But what if the mistake happened
last week, and you’ve turned your
computer on and off ten times
since then? Well, that’s one of the
many benefits of using a version

control system (VCS): it’s a giant undo key—a project-wide time
machine that can return you to those halcyon days of last week,
when the code actually compiled and ran.

For many folks, that’s the limit of their VCS usage. Those folks
are missing out on a whole bigger world of collaboration,
deployment pipelines, issue tracking, and general team
interaction.

So let’s take a look at VCS, first as a repository of changes, and
then as a central meeting place for your team and their code.

Shared Directories Are NOT Version Control

We still come across the occasional team who share their project source files across a
network: either internally or using some kind of cloud storage.

This is not viable.

Teams that do this are constantly messing up each other’s work, losing changes,
breaking builds, and getting into fist fights in the car park. It’s like writing concurrent
code with shared data and no synchronization mechanism. Use version control.

But there’s more! Some folks do use version control, and keep their main repository on
a network or cloud drive. They reason that this is the best of both worlds: their files are
accessible anywhere and (in the case of cloud storage) it’s backed up off-site.

Turns out that this is even worse, and you risk losing everything. The version control
software uses a set of interacting files and directories. If two instances simultaneously
make changes, the overall state can become corrupted, and there’s no telling how
much damage will be done. And no one likes seeing developers cry.

IT STARTS AT THE SOURCE

Version control systems keep track of every change you make in
your source code and documentation. With a properly
configured source code control system, you can always go back
to a previous version of your software.

But a version control system does far more than undo mistakes.
A good VCS will let you track changes, answering questions
such as: Who made changes in this line of code? What’s the
difference between the current version and last week’s? How
many lines of code did we change in this release? Which files get
changed most often? This kind of information is invaluable for
bug-tracking, audit, performance, and quality purposes.

A VCS will also let you identify releases of your software. Once
identified, you will always be able to go back and regenerate the
release, independent of changes that may have occurred later.

Version control systems may keep the files they maintain in a
central repository—a great candidate for archiving.

Finally, version control systems allow two or more users to be
working concurrently on the same set of files, even making
concurrent changes in the same file. The system then manages
the merging of these changes when the files are sent back to the
repository. Although seemingly risky, such systems work well in
practice on projects of all sizes.

Tip 28 Always Use Version Control

Always. Even if you are a single-person team on a one-week
project. Even if it’s a “throw-away’’ prototype. Even if the stuff
you’re working on isn’t source code. Make sure that everything
is under version control: documentation, phone number lists,
memos to vendors, makefiles, build and release procedures, that
little shell script that tidies up log files—everything. We
routinely use version control on just about everything we type
(including the text of this book). Even if we’re not working on a
project, our day-to-day work is secured in a repository.

BRANCHING OUT

Version control systems don’t just keep a single history of your
project. One of their most powerful and useful features is the
way they let you isolate islands of development into things
called branches. You can create a branch at any point in your
project’s history, and any work you do in that branch will be
isolated from all other branches. At some time in the future you
can merge the branch you’re working on back into another
branch, so the target branch now contains the changes you
made in your branch. Multiple people can even be working on a

branch: in a way, branches are like little clone projects.

One benefit of branches is the isolation they give you. If you
develop feature A in one branch, and a teammate works on
feature B in another, you’re not going to interfere with each
other.

A second benefit, which may be surprising, is that branches are
often at the heart of a team’s project workflow.

And this is where things get a little confusing. Version control
branches and test organization have something in common:
they both have thousands of people out there telling you how
you should do it. And that advice is largely meaningless,
because what they’re really saying is “this is what worked for
me.”

So use version control in your project, and if you bump into
workflow issues, search for possible solutions. And remember to
review and adjust what you’re doing as you gain experience.

A Thought Experiment

Spill an entire cup of tea (English breakfast, with a little milk) onto your laptop keyboard.
Take the machine to the smart-person bar, and have them tut and frown. Buy a new
computer. Take it home.

How long would it take to get that machine back to the same state it was in (with all the
SSH keys, editor configuration, shell setup, installed applications, and so on) at the
point where you first lifted that fateful cup? This was an issue one of us faced recently.

Just about everything that defined the configuration and usage of the original machine
was stored in version control, including:

All the user preferences and dotfiles

The editor configuration

The list of software installed using Homebrew

The Ansible script used to configure apps

All current projects

The machine was restored by the end of the afternoon.

VERSION CONTROL AS A PROJECT HUB

Although version control is incredibly useful on personal
projects, it really comes into its own when working with a team.
And much of this value comes from how you host your
repository.

Now, many version control systems don’t need any hosting.
They are completely decentralized, with each developer
cooperating on a peer-to-peer basis. But even with these
systems, it’s worth looking into having a central repository,
because once you do, you can take advantage of a ton of
integrations to make the project flow easier.

Many of the repository systems are open source, so you can
install and run them in your company. But that’s not really your
line of business, so we’d recommend most people host with a
third party. Look for features such as:

Good security and access control

Intuitive UI

The ability to do everything from the command line, too (because
you may need to automate it)

Automated builds and tests

Good support for branch merging (sometimes called pull requests)

Issue management (ideally integrated into commits and merges, so

you can keep metrics)

Good reporting (a Kanban board-like display of pending issues and
tasks can be very useful)

Good team communications: emails or other notifications on
changes, a wiki, and so on

Many teams have their VCS configured so that a push to a
particular branch will automatically build the system, run the
tests, and if successful deploy the new code into production.

Sound scary? Not when you realize you’re using version control.
You can always roll it back.

RELATED SECTIONS INCLUDE

Topic 11, Reversibility

Topic 49, Pragmatic Teams

Topic 51, Pragmatic Starter Kit

CHALLENGES

Knowing you can roll back to any previous state using the VCS is
one thing, but can you actually do it? Do you know the commands
to do it properly? Learn them now, not when disaster strikes and
you’re under pressure.

Spend some time thinking about recovering your own laptop
environment in case of a disaster. What would you need to recover?
Many of the things you need are just text files. If they’re not in a
VCS (hosted off your laptop), find a way to add them. Then think
about the other stuff: installed applications, system configuration,
and so on. How can you express all that stuff in text files so it, too,
can be saved?

An interesting experiment, once you’ve made some progress, is to
find an old computer you no longer use and see if your new system
can be used to set it up.

Consciously explore the features of your current VCS and hosting
provider that you’re not using. If your team isn’t using feature
branches, experiment with introducing them. The same with
pull/merge requests. Continuous integration. Build pipelines. Even
continuous deployment. Look into the team communication tools,
too: wikis, Kanban boards, and the like.
You don’t have to use any of it. But you do need to know what it
does so you can make that decision.

Use version control for nonproject things, too.

It is a painful thing
To look at your own
trouble and know
That you yourself and
no one else has made it

Sophocles, Ajax

Topic 20 Debugging

The word bug has been used to
describe an “object of terror’’ ever
since the fourteenth century. Rear
Admiral Dr. Grace Hopper, the
inventor of COBOL, is credited
with observing the first computer
bug—literally, a moth caught in a
relay in an early computer system.
When asked to explain why the
machine wasn’t behaving as
intended, a technician reported

that there was “a bug in the system,” and dutifully taped it—
wings and all—into the log book.

Regrettably, we still have bugs in the system, albeit not the
flying kind. But the fourteenth century meaning—a bogeyman—
is perhaps even more applicable now than it was then. Software
defects manifest themselves in a variety of ways, from
misunderstood requirements to coding errors. Unfortunately,
modern computer systems are still limited to doing what you
tell them to do, not necessarily what you want them to do.

No one writes perfect software, so it’s a given that debugging
will take up a major portion of your day. Let’s look at some of
the issues involved in debugging and some general strategies for
finding elusive bugs.

PSYCHOLOGY OF DEBUGGING

Debugging is a sensitive, emotional subject for many
developers. Instead of attacking it as a puzzle to be solved, you
may encounter denial, finger pointing, lame excuses, or just
plain apathy.

Embrace the fact that debugging is just problem solving, and
attack it as such.

Having found someone else’s bug, you can spend time and
energy laying blame on the filthy culprit who created it. In some
workplaces this is part of the culture, and may be cathartic.
However, in the technical arena, you want to concentrate on
fixing the problem, not the blame.

Tip 29 Fix the Problem, Not the Blame

It doesn’t really matter whether the bug is your fault or
someone else’s. It is still your problem.

A DEBUGGING MINDSET

Before you start debugging, it’s important to adopt the right
mindset. You need to turn off many of the defenses you use each
day to protect your ego, tune out any project pressures you may
be under, and get yourself comfortable. Above all, remember
the first rule of debugging:

Tip 30 Don’t Panic

It’s easy to get into a panic, especially if you are facing a
deadline, or have a nervous boss or client breathing down your
neck while you are trying to find the cause of the bug. But it is
very important to step back a pace, and actually think about

what could be causing the symptoms that you believe indicate a
bug.

If your first reaction on witnessing a bug or seeing a bug report
is “that’s impossible,” you are plainly wrong. Don’t waste a
single neuron on the train of thought that begins “but that can’t
happen” because quite clearly it can, and has.

Beware of myopia when debugging. Resist the urge to fix just
the symptoms you see: it is more likely that the actual fault may
be several steps removed from what you are observing, and may
involve a number of other related things. Always try to discover
the root cause of a problem, not just this particular appearance
of it.

WHERE TO START

Before you start to look at the bug, make sure that you are
working on code that built cleanly—without warnings. We
routinely set compiler warning levels as high as possible. It
doesn’t make sense to waste time trying to find a problem that
the computer could find for you! We need to concentrate on the
harder problems at hand.

When trying to solve any problem, you need to gather all the
relevant data. Unfortunately, bug reporting isn’t an exact
science. It’s easy to be misled by coincidences, and you can’t
afford to waste time debugging coincidences. You first need to
be accurate in your observations.

Accuracy in bug reports is further diminished when they come
through a third party—you may actually need to watch the user
who reported the bug in action to get a sufficient level of detail.

Andy once worked on a large graphics application. Nearing
release, the testers reported that the application crashed every
time they painted a stroke with a particular brush. The
programmer responsible argued that there was nothing wrong
with it; he had tried painting with it, and it worked just fine.
This dialog went back and forth for several days, with tempers
rapidly rising.

Finally, we got them together in the same room. The tester
selected the brush tool and painted a stroke from the upper
right corner to the lower left corner. The application exploded.
“Oh,” said the programmer, in a small voice, who then
sheepishly admitted that he had made test strokes only from the
lower left to the upper right, which did not expose the bug.

There are two points to this story:

You may need to interview the user who reported the bug in order
to gather more data than you were initially given.

Artificial tests (such as the programmer’s single brush stroke from
bottom to top) don’t exercise enough of an application. You must
brutally test both boundary conditions and realistic end-user usage
patterns. You need to do this systematically (see Ruthless and
Continuous Testing).

DEBUGGING STRATEGIES

Once you think you know what is going on, it’s time to find out
what the program thinks is going on.

Reproducing Bugs

No, our bugs aren’t really multiplying (although some of them
are probably old enough to do it legally). We’re talking about a
different kind of reproduction.

The best way to start fixing a bug is to make it reproducible.
After all, if you can’t reproduce it, how will you know if it is ever
fixed?

But we want more than a bug that can be reproduced by
following some long series of steps; we want a bug that can be
reproduced with a single command. It’s a lot harder to fix a bug
if you have to go through 15 steps to get to the point where the
bug shows up.

So here’s the most important rule of debugging:

Tip 31 Failing Test Before Fixing Code

Sometimes by forcing yourself to isolate the circumstances that
display the bug, you’ll even gain an insight on how to fix it. The
act of writing the test informs the solution.

CODER IN A STRANGE LAND

All this talk about isolating the bug is fine, when faced with
50,000 lines of code and a ticking clock, what’s a poor coder to
do?

First, look at the problem. Is it a crash? It’s always surprising
when we teach courses that involve programming how many
developers see an exception pop up in red and immediately tab
across to the code.

Tip 32 Read the Damn Error Message

’nuf said.

Bad Results

What if it’s not a crash? What if it’s just a bad result?

Get in there with a debugger and use your failing test to trigger
the problem.

Before anything else, make sure that you’re also seeing the
incorrect value in the debugger. We’ve both wasted hours trying
to track down a bug only to discover that this particular run of
the code worked fine.

Sometimes the problem is obvious: interest_rate is 4.5 and should
be 0.045. More often you have to look deeper to find out why the
value is wrong in the first place. Make sure you know how to
move up and down the call stack and examine the local stack
environment.

We find it often helps to keep pen and paper nearby so we can
jot down notes. In particular we often come across a clue and
chase it down, only to find it didn’t pan out. If we didn’t jot
down where we were when we started the chase, we could lose a
lot of time getting back there.

Sometimes you’re looking at a stack trace that seems to scroll on
forever. In this case, there’s often a quicker way to find the
problem than examining each and every stack frame: use a
binary chop. But before we discuss that, let’s look at two other
common bug scenarios.

Sensitivity to Input Values

You’ve been there. Your program works fine with all the test
data, and survives its first week in production with honor. Then
it suddenly crashes when fed a particular dataset.

You can try looking at the place it crashes and work backwards.
But sometimes it’s easier to start with the data. Get a copy of the
dataset and feed it through a locally running copy of the app,
making sure it still crashes. Then binary chop the data until you
isolate exactly which input values are leading to the crash.

Regressions Across Releases

You’re on a good team, and you release your software into
production. At some point a bug pops up in code that worked
OK a week ago. Wouldn’t it be nice if you could identify the
specific change that introduced it? Guess what? Binary chop
time.

THE BINARY CHOP

Every CS undergraduate has been forced to code a binary chop
(sometimes called a binary search). The idea is simple. You’re
looking for a particular value in a sorted array. You could just
look at each value in turn, but you’d end up looking at roughly
half the entries on average until you either found the value you
wanted, or you found a value greater than it, which would mean
the value’s not in the array.

But it’s faster to use a divide and conquer approach. Choose a
value in the middle of the array. If it’s the one you’re looking for,
stop. Otherwise you can chop the array in two. If the value you
find is greater than the target then you know it must be in the
first half of the array, otherwise it’s in the second half. Repeat
the procedure in the appropriate subarray, and in no time you’ll
have a result. (As we’ll see when we talk about Big-O Notation,
a linear search is , and a binary chop is).

So, the binary chop is way, way faster on any decent sized
problem. Let’s see how to apply it to debugging.

When you’re facing a massive stacktrace and you’re trying to
find out exactly which function mangled the value in error, you
do a chop by choosing a stack frame somewhere in the middle
and seeing if the error is manifest there. If it is, then you know
to focus on the frames before, otherwise the problem is in the
frames after. Chop again. Even if you have 64 frames in the
stacktrace, this approach will give you an answer after at most
six attempts.

If you find bugs that appear on certain datasets, you might be
able to do the same thing. Split the dataset into two, and see if
the problem occurs if you feed one or the other through the app.
Keep dividing the data until you get a minimum set of values
that exhibit the problem.

If your team has introduced a bug during a set of releases, you
can use the same type of technique. Create a test that causes the
current release to fail. Then choose a half-way release between
now and the last known working version. Run the test again,
and decide how to narrow your search. Being able to do this is
just one of the many benefits of having good version control in
your projects. Indeed, many version control systems will take
this further and will automate the process, picking releases for
you depending on the result of the test.

Logging and/or Tracing

Debuggers generally focus on the state of the program now.
Sometimes you need more—you need to watch the state of a
program or a data structure over time. Seeing a stack trace can
only tell you how you got here directly. It typically can’t tell you
what you were doing prior to this call chain, especially in event-
based systems.[25]

Tracing statements are those little diagnostic messages you
print to the screen or to a file that say things such as “got here”
and “value of x = 2.” It’s a primitive technique compared with
IDE-style debuggers, but it is peculiarly effective at diagnosing
several classes of errors that debuggers can’t. Tracing is
invaluable in any system where time itself is a factor:
concurrent processes, real-time systems, and event-based
applications.

You can use tracing statements to drill down into the code. That
is, you can add tracing statements as you descend the call tree.

Trace messages should be in a regular, consistent format as you
may want to parse them automatically. For instance, if you
needed to track down a resource leak (such as unbalanced file
opens/closes), you could trace each open and each close in a log
file. By processing the log file with text processing tools or shell
commands, you can easily identify where the offending open was
occurring.

Rubber Ducking

A very simple but particularly useful technique for finding the
cause of a problem is simply to explain it to someone else. The
other person should look over your shoulder at the screen, and
nod his or her head constantly (like a rubber duck bobbing up
and down in a bathtub). They do not need to say a word; the
simple act of explaining, step by step, what the code is supposed
to do often causes the problem to leap off the screen and
announce itself.

It sounds simple, but in explaining the problem to another
person you must explicitly state things that you may take for
granted when going through the code yourself. By having to

[26]

verbalize some of these assumptions, you may suddenly gain
new insight into the problem. And if you don’t have a person, a
rubber duck, or teddy bear, or potted plant will do.

Process of Elimination

In most projects, the code you are debugging may be a mixture
of application code written by you and others on your project
team, third-party products (database, connectivity, web
framework, specialized communications or algorithms, and so
on) and the platform environment (operating system, system
libraries, and compilers).

It is possible that a bug exists in the OS, the compiler, or a third-
party product—but this should not be your first thought. It is
much more likely that the bug exists in the application code
under development. It is generally more profitable to assume
that the application code is incorrectly calling into a library than
to assume that the library itself is broken. Even if the problem
does lie with a third party, you’ll still have to eliminate your
code before submitting the bug report.

We worked on a project where a senior engineer was convinced
that the select system call was broken on a Unix system. No
amount of persuasion or logic could change his mind (the fact
that every other networking application on the box worked fine
was irrelevant). He spent weeks writing workarounds, which,
for some odd reason, didn’t seem to fix the problem. When
finally forced to sit down and read the documentation on select,
he discovered the problem and corrected it in a matter of
minutes. We now use the phrase “select is broken’’ as a gentle
reminder whenever one of us starts blaming the system for a
fault that is likely to be our own.

[27]

Tip 33 “select” Isn’t Broken

Remember, if you see hoof prints, think horses—not zebras. The
OS is probably not broken. And select is probably just fine.

If you “changed only one thing’’ and the system stopped
working, that one thing was likely to be responsible, directly or
indirectly, no matter how farfetched it seems. Sometimes the
thing that changed is outside of your control: new versions of
the OS, compiler, database, or other third-party software can
wreak havoc with previously correct code. New bugs might show
up. Bugs for which you had a workaround get fixed, breaking
the workaround. APIs change, functionality changes; in short,
it’s a whole new ball game, and you must retest the system
under these new conditions. So keep a close eye on the schedule
when considering an upgrade; you may want to wait until after
the next release.

THE ELEMENT OF SURPRISE

When you find yourself surprised by a bug (perhaps even
muttering “that’s impossible” under your breath where we can’t
hear you), you must reevaluate truths you hold dear. In that
discount calculation algorithm—the one you knew was
bulletproof and couldn’t possibly be the cause of this bug—did
you test all the boundary conditions? That other piece of code
you’ve been using for years—it couldn’t possibly still have a bug
in it. Could it?

Of course it can. The amount of surprise you feel when
something goes wrong is proportional to the amount of trust
and faith you have in the code being run. That’s why, when
faced with a “surprising’’ failure, you must accept that one or

more of your assumptions is wrong. Don’t gloss over a routine
or piece of code involved in the bug because you “know” it
works. Prove it. Prove it in this context, with this data, with
these boundary conditions.

Tip 34 Don’t Assume It—Prove It

When you come across a surprise bug, beyond merely fixing it,
you need to determine why this failure wasn’t caught earlier.
Consider whether you need to amend the unit or other tests so
that they would have caught it.

Also, if the bug is the result of bad data that was propagated
through a couple of levels before causing the explosion, see if
better parameter checking in those routines would have isolated
it earlier (see the discussions on crashing early and assertions
here and here, respectively).

While you’re at it, are there any other places in the code that
may be susceptible to this same bug? Now is the time to find
and fix them. Make sure that whatever happened, you’ll know if
it happens again.

If it took a long time to fix this bug, ask yourself why. Is there
anything you can do to make fixing this bug easier the next time
around? Perhaps you could build in better testing hooks, or
write a log file analyzer.

Finally, if the bug is the result of someone’s wrong assumption,
discuss the problem with the whole team: if one person
misunderstands, then it’s possible many people do.

Do all this, and hopefully you won’t be surprised next time.

DEBUGGING CHECKLIST

Is the problem being reported a direct result of the underlying bug,
or merely a symptom?

Is the bug really in the framework you’re using? Is it in the OS? Or
is it in your code?

If you explained this problem in detail to a coworker, what would
you say?

If the suspect code passes its unit tests, are the tests complete
enough? What happens if you run the tests with this data?

Do the conditions that caused this bug exist anywhere else in the
system? Are there other bugs still in the larval stage, just waiting to
hatch?

RELATED SECTIONS INCLUDE

Topic 24, Dead Programs Tell No Lies

CHALLENGES

Debugging is challenge enough.

Topic 21 Text Manipulation

Pragmatic Programmers manipulate text the same way
woodworkers shape wood. In previous sections we discussed
some specific tools—shells, editors, debuggers—that we use.
These are similar to a woodworker’s chisels, saws, and planes—
tools specialized to do one or two jobs well. However, every now
and then we need to perform some transformation not readily
handled by the basic tool set. We need a general-purpose text
manipulation tool.

Text manipulation languages are to programming what
routers are to woodworking. They are noisy, messy, and
somewhat brute force. Make mistakes with them, and entire
pieces can be ruined. Some people swear they have no place in
the toolbox. But in the right hands, both routers and text
manipulation languages can be incredibly powerful and
versatile. You can quickly trim something into shape, make
joints, and carve. Used properly, these tools have surprising
finesse and subtlety. But they take time to master.

Fortunately, there are a number of great text manipulation
languages. Unix developers (and we include macOS users here)
often like to use the power of their command shells, augmented
with tools such as awk and sed. People who prefer a more
structured tool may prefer languages such as Python or Ruby.

These languages are important enabling technologies. Using
them, you can quickly hack up utilities and prototype ideas—

[28]

jobs that might take five or ten times as long using conventional
languages. And that multiplying factor is crucially important to
the kind of experimenting that we do. Spending 30 minutes
trying out a crazy idea is a whole lot better than spending five
hours. Spending a day automating important components of a
project is acceptable; spending a week might not be. In their
book The Practice of Programming [KP99], Kernighan and
Pike built the same program in five different languages. The
Perl version was the shortest (17 lines, compared with C’s 150).
With Perl you can manipulate text, interact with programs, talk
over networks, drive web pages, perform arbitrary precision
arithmetic, and write programs that look like Snoopy swearing.

Tip 35 Learn a Text Manipulation Language

To show the wide-ranging applicability of text manipulation
languages, here’s a sample of some stuff we’ve done with Ruby
and Python just related to the creation of this book:

Building the Book
The build system for the Pragmatic Bookshelf is written
in Ruby. Authors, editors, layout people, and support
folks use Rake tasks to coordinate the building of PDFs
and ebooks.

Code inclusion and highlighting
We think it is important that any code presented in a
book should have been tested first. Most of the code in
this book has been. However, using the DRY principle
(see Topic 9, DRY—The Evils of Duplication) we didn’t
want to copy and paste lines of code from the tested
programs into the book. That would mean we’d be

duplicating code, virtually guaranteeing that we’d forget
to update an example when the corresponding program
was changed. For some examples, we also didn’t want to
bore you with all the framework code needed to make our
example compile and run. We turned to Ruby. A
relatively simple script is invoked when we format the
book—it extracts a named segment of a source file, does
syntax highlighting, and converts the result into the
typesetting language we use.

Website update
We have a simple script that does a partial book build,
extracts the table of contents, then uploads it to the
book’s page on our website. We also have a script that
extracts sections of a book and uploads them as samples.

Including equations
There’s a Python script that converts LaTeX math
markup into nicely formatted text.

Index generation
Most indexes are created as separate documents (which
makes maintaining them difficult if a document
changes). Ours are marked up in the text itself, and a
Ruby script collates and formats the entries.

And so on. In a very real way, the Pragmatic Bookshelf is built
around text manipulation. And if you follow our advice to keep
things in plain text, then using these languages to manipulate
that text will bring a whole host of benefits.

RELATED SECTIONS INCLUDE

Topic 16, The Power of Plain Text

Topic 17, Shell Games

EXERCISES

Exercise 11

You’re rewriting an application that used to use YAML as a
configuration language. Your company has now standardized on
JSON, so you have a bunch of .yaml files that need to be turned
into .json. Write a script that takes a directory and converts each
.yaml file into a corresponding .json file (so database.yaml becomes
database.json, and the contents are valid JSON).

Exercise 12

Your team initially chose to use camelCase names for variables,
but then changed their collective mind and switched to
snake_case. Write a script that scans all the source files for
camelCase names and reports on them.

Exercise 13

Following on from the previous exercise, add the ability to
change those variable names automatically in one or more files.
Remember to keep a backup of the originals in case something
goes horribly, horribly wrong.

Topic 22 Engineering Daybooks

Dave once worked for a small computer manufacturer, which
meant working alongside electronic and sometimes mechanical
engineers.

Many of them walked around with a paper notebook, normally
with a pen stuffed down the spine. Every now and then when we
were talking, they’d pop the notebook open and scribble
something.

Eventually Dave asked the obvious question. It turned out that
they’d been trained to keep an engineering daybook, a kind of
journal in which they recorded what they did, things they’d
learned, sketches of ideas, readings from meters: basically
anything to do with their work. When the notebook became full,
they’d write the date range on the spine, then stick it on the
shelf next to previous daybooks. There may have been a gentle
competition going on for whose set of books took the most shelf
space.

We use daybooks to take notes in meetings, to jot down what
we’re working on, to note variable values when debugging, to
leave reminders where we put things, to record wild ideas, and
sometimes just to doodle.

The daybook has three main benefits:

It is more reliable than memory. People might ask “What was the
name of that company you called last week about the power supply

[29]

problem?” and you can flip back a page or so and give them the
name and number.

It gives you a place to store ideas that aren’t immediately relevant
to the task at hand. That way you can continue to concentrate on
what you are doing, knowing that the great idea won’t be forgotten.

It acts as a kind of rubber duck (described here). When you stop to
write something down, your brain may switch gears, almost as if
talking to someone—a great chance to reflect. You may start to
make a note and then suddenly realize that what you’d just done,
the topic of the note, is just plain wrong.

There’s an added benefit, too. Every now and then you can look
back at what you were doing oh-so-many-years-ago and think
about the people, the projects, and the awful clothes and
hairstyles.

So, try keeping an engineering daybook. Use paper, not a file or
a wiki: there’s something special about the act of writing
compared to typing. Give it a month, and see if you’re getting
any benefits.

If nothing else, it’ll make writing your memoir easier when
you’re rich and famous.

RELATED SECTIONS INCLUDE

Topic 6, Your Knowledge Portfolio

Topic 37, Listen to Your Lizard Brain

[24]

[25]

Footnotes

All software becomes legacy software as soon as it’s written.

Although the Elm language does have a time-traveling debugger.

Copyright © 2020 Pearson Education, Inc.

[26]

[27]

[28]

[29]

Why “rubber ducking’’? While an undergraduate at Imperial College in London, Dave
did a lot of work with a research assistant named Greg Pugh, one of the best developers
Dave has known. For several months Greg carried around a small yellow rubber duck,
which he’d place on his terminal while coding. It was a while before Dave had the
courage to ask….

Earlier versions of the book talked about talking to your pot plant. It was a typo.
Honest.

Here router means the tool that spins cutting blades very, very fast, not a device for
interconnecting networks.

There is some evidence that doodling helps focus and improves cognitive skills, for
example, see What does doodling do? [And10].

Chapter 4

Pragmatic Paranoia

Tip 36 You Can’t Write Perfect Software

Did that hurt? It shouldn’t. Accept it as an axiom of life.
Embrace it. Celebrate it. Because perfect software doesn’t exist.
No one in the brief history of computing has ever written a piece
of perfect software. It’s unlikely that you’ll be the first. And
unless you accept this as a fact, you’ll end up wasting time and
energy chasing an impossible dream.

So, given this depressing reality, how does a Pragmatic
Programmer turn it into an advantage? That’s the topic of this
chapter.

Everyone knows that they personally are the only good driver on
Earth. The rest of the world is out there to get them, blowing
through stop signs, weaving between lanes, not indicating turns,
texting on the phone, and just generally not living up to our
standards. So we drive defensively. We look out for trouble
before it happens, anticipate the unexpected, and never put
ourselves into a position from which we can’t extricate
ourselves.

The analogy with coding is pretty obvious. We are constantly
interfacing with other people’s code—code that might not live
up to our high standards—and dealing with inputs that may or
may not be valid. So we are taught to code defensively. If there’s
any doubt, we validate all information we’re given. We use
assertions to detect bad data, and distrust data from potential
attackers or trolls. We check for consistency, put constraints on
database columns, and generally feel pretty good about
ourselves.

But Pragmatic Programmers take this a step further. They don’t
trust themselves, either. Knowing that no one writes perfect
code, including themselves, Pragmatic Programmers build in
defenses against their own mistakes. We describe the first
defensive measure in Topic 23, Design by Contract: clients and
suppliers must agree on rights and responsibilities.

In Topic 24, Dead Programs Tell No Lies, we want to ensure
that we do no damage while we’re working the bugs out. So we
try to check things often and terminate the program if things go
awry.

Topic 25, Assertive Programming describes an easy method of
checking along the way—write code that actively verifies your
assumptions.

As your programs get more dynamic, you’ll find yourself
juggling system resources—memory, files, devices, and the like.
In Topic 26, How to Balance Resources, we’ll suggest ways of
ensuring that you don’t drop any of the balls.

And most importantly, we stick to small steps always, as
described in Topic 27, Don’t Outrun Your Headlights, so we

don’t fall off the edge of the cliff.

In a world of imperfect systems, ridiculous time scales,
laughable tools, and impossible requirements, let’s play it safe.
As Woody Allen said, “When everybody actually is out to get
you, paranoia is just good thinking.”

Nothing astonishes
men so much as
common sense and
plain dealing.

Ralph Waldo Emerson,
Essays

Topic 23 Design by Contract

Dealing with computer systems is
hard. Dealing with people is even
harder. But as a species, we’ve had
longer to figure out issues of
human interactions. Some of the
solutions we’ve come up with
during the last few millennia can
be applied to writing software as
well. One of the best solutions for
ensuring plain dealing is the

contract.

A contract defines your rights and responsibilities, as well as
those of the other party. In addition, there is an agreement
concerning repercussions if either party fails to abide by the
contract.

Maybe you have an employment contract that specifies the
hours you’ll work and the rules of conduct you must follow. In
return, the company pays you a salary and other perks. Each
party meets its obligations and everyone benefits.

It’s an idea used the world over—both formally and informally—
to help humans interact. Can we use the same concept to help
software modules interact? The answer is “yes.’’

DBC

Bertrand Meyer (Object-Oriented Software
Construction [Mey97]) developed the concept of Design by
Contract for the language Eiffel. It is a simple yet powerful
technique that focuses on documenting (and agreeing to) the
rights and responsibilities of software modules to ensure
program correctness. What is a correct program? One that does
no more and no less than it claims to do. Documenting and
verifying that claim is the heart of Design by Contract (DBC, for
short).

Every function and method in a software system does
something. Before it starts that something, the function may
have some expectation of the state of the world, and it may be
able to make a statement about the state of the world when it
concludes. Meyer describes these expectations and claims as
follows:

Preconditions
What must be true in order for the routine to be called;
the routine’s requirements. A routine should never get
called when its preconditions would be violated. It is the
caller’s responsibility to pass good data (see the box
here).

Postconditions
What the routine is guaranteed to do; the state of the
world when the routine is done. The fact that the routine
has a postcondition implies that it will conclude: infinite
loops aren’t allowed.

Class invariants
A class ensures that this condition is always true from the
perspective of a caller. During internal processing of a

[30]

routine, the invariant may not hold, but by the time the
routine exits and control returns to the caller, the
invariant must be true. (Note that a class cannot give
unrestricted write-access to any data member that
participates in the invariant.)

The contract between a routine and any potential caller can thus
be read as

If all the routine’s preconditions are met by the caller, the
routine shall guarantee that all postconditions and invariants
will be true when it completes.

If either party fails to live up to the terms of the contract, then a
remedy (which was previously agreed to) is invoked—maybe an
exception is raised, or the program terminates. Whatever
happens, make no mistake that failure to live up to the contract
is a bug. It is not something that should ever happen, which is
why preconditions should not be used to perform things such as
user-input validation.

Some languages have better support for these concepts than
others. Clojure, for example, supports pre- and post-conditions
as well as the more comprehensive instrumentation provided by
specs. Here’s an example of a banking function to make a
deposit using simple pre- and post-conditions:

 (defn accept-deposit [account-id amount]
 { :pre [(> amount 0.00)
 (account-open? account-id)]
 :post [(contains? (account-transactions account-id) %)] }
 "Accept a deposit and return the new transaction id"
 ;; Some other processing goes here...
 ;; Return the newly created transaction:

 (create-transaction account-id :deposit amount))

There are two preconditions for the accept-deposit function. The
first is that the amount is greater than zero, and the second is
that the account is open and valid, as determined by some
function named account-open?. There is also a postcondition: the
function guarantees that the new transaction (the return value
of this function, represented here by ‘%’) can be found among
the transactions for this account.

If you call accept-deposit with a positive amount for the deposit
and a valid account, it will proceed to create a transaction of the
appropriate type and do whatever other processing it does.
However, if there’s a bug in the program and you somehow
passed in a negative amount for the deposit, you’ll get a runtime
exception:

 Exception in thread "main"...
 Caused by: java.lang.AssertionError: Assert failed: (> amount 0.0)

Similarly, this function requires that the specified account is
open and valid. If it’s not, you’ll see that exception instead:

 Exception in thread "main"...
 Caused by: java.lang.AssertionError: Assert failed: (account-open? account-

id)

Other languages have features that, while not DBC-specific, can
still be used to good effect. For example, Elixir uses guard
clauses to dispatch function calls against several available
bodies:

 defmodule Deposits do
 def accept_deposit(account_id, amount) when (amount > 100000) do
 # Call the manager!
 end
 def accept_deposit(account_id, amount) when (amount > 10000) do

 # Extra Federal requirements for reporting
 # Some processing...
 end
 def accept_deposit(account_id, amount) when (amount > 0) do
 # Some processing...
 end
 end

In this case, calling accept_deposit with a large enough amount
may trigger additional steps and processing. Try to call it with
an amount less than or equal to zero, however, and you’ll get an
exception informing you that you can’t:

 ** (FunctionClauseError) no function clause matching in
Deposits.accept_deposit/2

This is a better approach than simply checking your inputs; in
this case, you simply can not call this function if your
arguments are out of range.

Tip 37 Design with Contracts

In Topic 10, Orthogonality, we recommended writing “shy”
code. Here, the emphasis is on “lazy” code: be strict in what you
will accept before you begin, and promise as little as possible in
return. Remember, if your contract indicates that you’ll accept
anything and promise the world in return, then you’ve got a lot
of code to write!

In any programming language, whether it’s functional, object-
oriented, or procedural, DBC forces you to think.

DBC and Test-Driven Development

Is Design by Contract needed in a world where developers practice unit testing, test-
driven development (TDD), property-based testing, or defensive programming?

The short answer is “yes.”

DBC and testing are different approaches to the broader topic of program correctness.
They both have value and both have uses in different situations. DBC offers several
advantages over specific testing approaches:

DBC doesn’t require any setup or mocking

DBC defines the parameters for success or failure in all cases, whereas
testing can only target one specific case at a time

TDD and other testing happens only at “test time” within the build cycle. But
DBC and assertions are forever: during design, development, deployment,
and maintenance

TDD does not focus on checking internal invariants within the code under test,
it’s more black-box style to check the public interface

DBC is more efficient (and DRY-er) than defensive programming, where
everyone has to validate data in case no one else does.

TDD is a great technique, but as with many techniques, it might invite you to
concentrate on the “happy path,” and not the real world full of bad data, bad actors, bad
versions, and bad specifications.

Class Invariants and Functional Languages

It’s a naming thing. Eiffel is an object-oriented language, so
Meyer named this idea “class invariant.” But, really, it’s more
general than that. What this idea really refers to is state. In an
object-oriented language, the state is associated with instances
of classes. But other languages have state, too.

In a functional language, you typically pass state to functions
and receive updated state as a result. The concepts of invariants
is just as useful in these circumstances.

IMPLEMENTING DBC

Simply enumerating what the input domain range is, what the
boundary conditions are, and what the routine promises to
deliver—or, more importantly, what it doesn’t promise to deliver
—before you write the code is a huge leap forward in writing

better software. By not stating these things, you are back to
programming by coincidence (see the discussion here), which
is where many projects start, finish, and fail.

In languages that do not support DBC in the code, this might be
as far as you can go—and that’s not too bad. DBC is, after all, a
design technique. Even without automatic checking, you can
put the contract in the code as comments or in the unit tests and
still get a very real benefit.

Assertions

While documenting these assumptions is a great start, you can
get much greater benefit by having the compiler check your
contract for you. You can partially emulate this in some
languages by using assertions: runtime checks of logical
conditions (see Topic 25, Assertive Programming). Why only
partially? Can’t you use assertions to do everything DBC can do?

Unfortunately, the answer is no. To begin with, in object-
oriented languages there probably is no support for propagating
assertions down an inheritance hierarchy. This means that if
you override a base class method that has a contract, the
assertions that implement that contract will not be called
correctly (unless you duplicate them manually in the new code).
You must remember to call the class invariant (and all base
class invariants) manually before you exit every method. The
basic problem is that the contract is not automatically enforced.

In other environments, the exceptions generated from DBC-
style assertions might be turned off globally or ignored in the
code.

Also, there is no built-in concept of “old’’ values; that is, values

as they existed at the entry to a method. If you’re using
assertions to enforce contracts, you must add code to the
precondition to save any information you’ll want to use in the
postcondition, if the language will even allow that. In the Eiffel
language, where DBC was born, you can just use old expression.

Finally, conventional runtime systems and libraries are not
designed to support contracts, so these calls are not checked.
This is a big loss, because it is often at the boundary between
your code and the libraries it uses that the most problems are
detected (see Topic 24, Dead Programs Tell No Lies for a more
detailed discussion).

Who's Responsible?

Who is responsible for checking the precondition, the caller or the routine being called?
When implemented as part of the language, the answer is neither: the precondition is
tested behind the scenes after the caller invokes the routine but before the routine itself
is entered. Thus if there is any explicit checking of parameters to be done, it must be
performed by the caller, because the routine itself will never see parameters that violate
its precondition. (For languages without built-in support, you would need to bracket the
called routine with a preamble and/or postamble that checks these assertions.)

Consider a program that reads a number from the console, calculates its square root
(by calling sqrt), and prints the result. The sqrt function has a precondition—its argument
must not be negative. If the user enters a negative number at the console, it is up to the
calling code to ensure that it never gets passed to sqrt. This calling code has many
options: it could terminate, it could issue a warning and read another number, or it
could make the number positive and append an i to the result returned by sqrt.
Whatever its choice, this is definitely not sqrt’s problem.

By expressing the domain of the square root function in the precondition of the sqrt
routine, you shift the burden of correctness to the caller—where it belongs. You can
then design the sqrt routine secure in the knowledge that its input will be in range.

DBC AND CRASHING EARLY

DBC fits in nicely with our concept of crashing early (see Topic
24, Dead Programs Tell No Lies). By using an assert or DBC

mechanism to validate the preconditions, postconditions, and
invariants, you can crash early and report more accurate
information about the problem.

For example, suppose you have a method that calculates square
roots. It needs a DBC precondition that restricts the domain to
positive numbers. In languages that support DBC, if you pass
sqrt a negative parameter, you’ll get an informative error such as
sqrt_arg_must_be_positive, along with a stack trace.

This is better than the alternative in other languages such as
Java, C, and C++ where passing a negative number to sqrt

returns the special value NaN (Not a Number). It may be some
time later in the program that you attempt to do some math on
NaN, with surprising results.

It’s much easier to find and diagnose the problem by crashing
early, at the site of the problem.

SEMANTIC INVARIANTS

You can use semantic invariants to express inviolate
requirements, a kind of “philosophical contract.’’

We once wrote a debit card transaction switch. A major
requirement was that the user of a debit card should never have
the same transaction applied to their account twice. In other
words, no matter what sort of failure mode might happen, the
error should be on the side of not processing a transaction
rather than processing a duplicate transaction.

This simple law, driven directly from the requirements, proved
to be very helpful in sorting out complex error recovery

scenarios, and guided the detailed design and implementation
in many areas.

Be sure not to confuse requirements that are fixed, inviolate
laws with those that are merely policies that might change with
a new management regime. That’s why we use the term
semantic invariants—it must be central to the very meaning of a
thing, and not subject to the whims of policy (which is what
more dynamic business rules are for).

When you find a requirement that qualifies, make sure it
becomes a well-known part of whatever documentation you are
producing—whether it is a bulleted list in the requirements
document that gets signed in triplicate or just a big note on the
common whiteboard that everyone sees. Try to state it clearly
and unambiguously. For example, in the debit card example, we
might write

Err in favor of the consumer.

This is a clear, concise, unambiguous statement that’s
applicable in many different areas of the system. It is our
contract with all users of the system, our guarantee of behavior.

DYNAMIC CONTRACTS AND AGENTS
Until now, we have talked about contracts as fixed, immutable
specifications. But in the landscape of autonomous agents, this
doesn’t need to be the case. By the definition of “autonomous,”
agents are free to reject requests that they do not want to honor.
They are free to renegotiate the contract—“I can’t provide that,
but if you give me this, then I might provide something else.”

Certainly any system that relies on agent technology has a

critical dependence on contractual arrangements—even if they
are dynamically generated.

Imagine: with enough components and agents that can
negotiate their own contracts among themselves to achieve a
goal, we might just solve the software productivity crisis by
letting software solve it for us.

But if we can’t use contracts by hand, we won’t be able to use
them automatically. So next time you design a piece of software,
design its contract as well.

RELATED SECTIONS INCLUDE

Topic 24, Dead Programs Tell No Lies

Topic 25, Assertive Programming

Topic 38, Programming by Coincidence

Topic 42, Property-Based Testing

Topic 43, Stay Safe Out There

Topic 45, The Requirements Pit

CHALLENGES

Points to ponder: If DBC is so powerful, why isn’t it used more
widely? Is it hard to come up with the contract? Does it make you
think about issues you’d rather ignore for now? Does it force you to
THINK!? Clearly, this is a dangerous tool!

EXERCISES
Exercise 14 (possible answer)

Design an interface to a kitchen blender. It will eventually be a
web-based, IoT-enabled blender, but for now we just need the
interface to control it. It has ten speed settings (0 means off).
You can’t operate it empty, and you can change the speed only
one unit at a time (that is, from 0 to 1, and from 1 to 2, not from
0 to 2).

Here are the methods. Add appropriate pre- and postconditions
and an invariant.

 int getSpeed()
 void setSpeed(int x)
 boolean isFull()
 void fill()
 void empty()

Exercise 15 (possible answer)

How many numbers are in the series 0, 5, 10, 15, …, 100?

Topic 24 Dead Programs Tell No Lies

Have you noticed that sometimes other people can detect that
things aren’t well with you before you’re aware of the problem
yourself? It’s the same with other people’s code. If something is
starting to go awry with one of our programs, sometimes it is a
library or framework routine that catches it first. Maybe we’ve
passed in a nil value, or an empty list. Maybe there’s a missing
key in that hash, or the value we thought contained a hash really
contains a list instead. Maybe there was a network error or
filesystem error that we didn’t catch, and we’ve got empty or
corrupted data. A logic error a couple of million instructions ago
means that the selector for a case statement is no longer the
expected 1, 2, or 3. We’ll hit the default case unexpectedly. That’s
also one reason why each and every case/switch statement
needs to have a default clause: we want to know when the
“impossible” has happened.

It’s easy to fall into the “it can’t happen” mentality. Most of us
have written code that didn’t check that a file closed
successfully, or that a trace statement got written as we
expected. And all things being equal, it’s likely that we didn’t
need to—the code in question wouldn’t fail under any normal
conditions. But we’re coding defensively. We’re making sure
that the data is what we think it is, that the code in production is
the code we think it is. We’re checking that the correct versions
of dependencies were actually loaded.

All errors give you information. You could convince yourself

that the error can’t happen, and choose to ignore it. Instead,
Pragmatic Programmers tell themselves that if there is an error,
something very, very bad has happened. Don’t forget to Read
the Damn Error Message (see Coder in a Strange Land).

CATCH AND RELEASE IS FOR FISH

Some developers feel that is it good style to catch or rescue all
exceptions, re-raising them after writing some kind of message.
Their code is full of things like this (where a bare raise statement
reraises the current exception):

 try do
 add_score_to_board(score);
 rescue InvalidScore
 Logger.error("Can't add invalid score. Exiting");
 raise
 rescue BoardServerDown
 Logger.error("Can't add score: board is down. Exiting");
 raise
 rescue StaleTransaction
 Logger.error("Can't add score: stale transaction. Exiting");
 raise
 end

Here’s how Pragmatic Programmers would write this:

 add_score_to_board(score);

We prefer it for two reasons. First, the application code isn’t
eclipsed by the error handling. Second, and perhaps more
important, the code is less coupled. In the verbose example, we
have to list every exception the add_score_to_board method could
raise. If the writer of that method adds another exception, our
code is subtly out of date. In the more pragmatic second
version, the new exception is automatically propagated.

Tip 38 Crash Early

CRASH, DON’T TRASH
One of the benefits of detecting problems as soon as you can is
that you can crash earlier, and crashing is often the best thing
you can do. The alternative may be to continue, writing
corrupted data to some vital database or commanding the
washing machine into its twentieth consecutive spin cycle.

The Erlang and Elixir languages embrace this philosophy. Joe
Armstrong, inventor of Erlang and author of Programming
Erlang: Software for a Concurrent World [Arm07], is often
quoted as saying, “Defensive programming is a waste of time.
Let it crash!” In these environments, programs are designed to
fail, but that failure is managed with supervisors. A supervisor
is responsible for running code and knows what to do in case
the code fails, which could include cleaning up after it,
restarting it, and so on. What happens when the supervisor
itself fails? Its own supervisor manages that event, leading to a
design composed of supervisor trees. The technique is very
effective and helps to account for the use of these languages in
high-availability, fault-tolerant systems.

In other environments, it may be inappropriate simply to exit a
running program. You may have claimed resources that might
not get released, or you may need to write log messages, tidy up
open transactions, or interact with other processes.

However, the basic principle stays the same—when your code
discovers that something that was supposed to be impossible
just happened, your program is no longer viable. Anything it
does from this point forward becomes suspect, so terminate it

as soon as possible.

A dead program normally does a lot less damage than a crippled
one.

RELATED SECTIONS INCLUDE

Topic 20, Debugging

Topic 23, Design by Contract

Topic 25, Assertive Programming

Topic 26, How to Balance Resources

Topic 43, Stay Safe Out There

There is a luxury in
self-reproach. When
we blame ourselves we
feel no one else has a
right to blame us.

Oscar Wilde, The Picture of
Dorian Gray

Topic 25 Assertive Programming

It seems that there’s a mantra that
every programmer must memorize
early in his or her career. It is a
fundamental tenet of computing, a
core belief that we learn to apply to
requirements, designs, code,
comments, just about everything
we do. It goes

This can never happen…

“This application will never be
used abroad, so why internationalize it?” “count can’t be
negative.” “Logging can’t fail.”

Let’s not practice this kind of self-deception, particularly when
coding.

Tip 39 Use Assertions to Prevent the Impossible

Whenever you find yourself thinking “but of course that could
never happen,” add code to check it. The easiest way to do this is
with assertions. In many language implementations, you’ll find
some form of assert that checks a Boolean condition. These
checks can be invaluable. If a parameter or a result should never
be null, then check for it explicitly:

[31]

 assert (result != null);

In the Java implementation, you can (and should) add a
descriptive string:

 assert result != null && result.size() > 0 : "Empty result from XYZ";

Assertions are also useful checks on an algorithm’s operation.
Maybe you’ve written a clever sort algorithm, named my_sort.
Check that it works:

 books = my_sort(find("scifi"))
 assert(is_sorted?(books))

Don’t use assertions in place of real error handling. Assertions
check for things that should never happen: you don’t want to be
writing code such as the following:

 puts("Enter 'Y' or 'N': ")
 ans = gets[0] # Grab first character of response
 assert((ch == 'Y') || (ch == 'N')) # Very bad idea!

And just because most assert implementations will terminate the
process when an assertion fails, there’s no reason why versions
you write should. If you need to free resources, catch the
assertion’s exception or trap the exit, and run your own error
handler. Just make sure the code you execute in those dying
milliseconds doesn’t rely on the information that triggered the
assertion failure in the first place.

ASSERTIONS AND SIDE EFFECTS

It’s embarrassing when the code we add to detect errors actually
ends up creating new errors. This can happen with assertions if
evaluating the condition has side effects. For example, it would
be a bad idea to code something such as

 while (iter.hasMoreElements()) {
 assert(iter.nextElement() != null);
 Object obj = iter.nextElement();
 //
 }

The .nextElement() call in the assertion has the side effect of
moving the iterator past the element being fetched, and so the
loop will process only half the elements in the collection. It
would be better to write

 while (iter.hasMoreElements()) {
 Object obj = iter.nextElement();
 assert(obj != null);
 //
 }

This problem is a kind of Heisenbug —debugging that changes
the behavior of the system being debugged.

(We also believe that nowadays, when most languages have
decent support for iterating functions over collections, this kind
of explicit loop is unnecessary and bad form.)

LEAVE ASSERTIONS TURNED ON

There is a common misunderstanding about assertions. It goes
something like this:

Assertions add some overhead to code. Because they check for
things that should never happen, they’ll get triggered only by a
bug in the code. Once the code has been tested and shipped,
they are no longer needed, and should be turned off to make the
code run faster. Assertions are a debugging facility.

There are two patently wrong assumptions here. First, they
assume that testing finds all the bugs. In reality, for any

[32]

complex program you are unlikely to test even a minuscule
percentage of the permutations your code will be put through.
Second, the optimists are forgetting that your program runs in a
dangerous world. During testing, rats probably won’t gnaw
through a communications cable, someone playing a game
won’t exhaust memory, and log files won’t fill the storage
partition. These things might happen when your program runs
in a production environment. Your first line of defense is
checking for any possible error, and your second is using
assertions to try to detect those you’ve missed.

Turning off assertions when you deliver a program to
production is like crossing a high wire without a net because
you once made it across in practice. There’s dramatic value, but
it’s hard to get life insurance.

Even if you do have performance issues, turn off only those
assertions that really hit you. The sort example above may be a
critical part of your application, and may need to be fast. Adding
the check means another pass through the data, which might be
unacceptable. Make that particular check optional, but leave the
rest in.

Use Assertions in Production, Win Big Money

A former neighbor of Andy’s headed up a small startup company that made network
devices. One of their secrets to success was the decision to leave assertions in place in
production releases. These assertions were well crafted to report all the pertinent data
leading to the failure, and presented via a nice-looking UI to the end user. This level of
feedback, from real users under actual conditions, allowed the developers to plug the
holes and fix these obscure, hard-to-reproduce bugs, resulting in remarkably stable,
bullet-proof software.

This small, unknown company had such a solid product, it was soon acquired for
hundreds of millions of dollars.

Just sayin’.

Exercise 16 (possible answer)

A quick reality check. Which of these “impossible” things can
happen?

A month with fewer than 28 days

Error code from a system call: can’t access the current directory

In C++: a = 2; b = 3; but (a + b) does not equal 5

A triangle with an interior angle sum ≠ 180°

A minute that doesn’t have 60 seconds

(a + 1) <= a

RELATED SECTIONS INCLUDE

Topic 23, Design by Contract

Topic 24, Dead Programs Tell No Lies

Topic 42, Property-Based Testing

Topic 43, Stay Safe Out There

To light a candle is to
cast a shadow...

Ursula K. Le Guin, A Wizard
of Earthsea

Topic 26 How to Balance Resources

We all manage resources whenever
we code: memory, transactions,
threads, network connections,
files, timers—all kinds of things
with limited availability. Most of
the time, resource usage follows a
predictable pattern: you allocate
the resource, use it, and then

deallocate it.

However, many developers have no consistent plan for dealing
with resource allocation and deallocation. So let us suggest a
simple tip:

Tip 40 Finish What You Start

This tip is easy to apply in most circumstances. It simply means
that the function or object that allocates a resource should be
responsible for deallocating it. Let’s see how it applies by
looking at an example of some bad code—part of a Ruby
program that opens a file, reads customer information from it,
updates a field, and writes the result back. We’ve eliminated
error handling to make the example clearer:

 def read_customer
 @customer_file = File.open(@name + ".rec", "r+")
 @balance = BigDecimal(@customer_file.gets)
 end

 def write_customer
 @customer_file.rewind
 @customer_file.puts @balance.to_s
 @customer_file.close
 end

 def update_customer(transaction_amount)
 read_customer
 @balance = @balance.add(transaction_amount,2)
 write_customer
 end

At first sight, the routine update_customer looks reasonable. It
seems to implement the logic we require—reading a record,
updating the balance, and writing the record back out. However,
this tidiness hides a major problem. The routines read_customer

and write_customer are tightly coupled —they share the instance
variable customer_file. read_customer opens the file and stores the file
reference in customer_file, and then write_customer uses that stored
reference to close the file when it finishes. This shared variable
doesn’t even appear in the update_customer routine.

Why is this bad? Let’s consider the unfortunate maintenance
programmer who is told that the specification has changed—the
balance should be updated only if the new value is not negative.
They go into the source and change update_customer:

 def update_customer(transaction_amount)
 read_customer
 if (transaction_amount >= 0.00)
 @balance = @balance.add(transaction_amount,2)
 write_customer
 end
 end

All seems fine during testing. However, when the code goes into
production, it collapses after several hours, complaining of too

[33]

many open files. It turns out that write_customer is not getting
called in some circumstances. When that happens, the file is not
getting closed.

A very bad solution to this problem would be to deal with the
special case in update_customer:.

 def update_customer(transaction_amount)
 read_customer
 if (transaction_amount >= 0.00)
 @balance += BigDecimal(transaction_amount, 2)
 write_customer
 else
 @customer_file.close # Bad idea!
 end
 end

This will fix the problem—the file will now get closed regardless
of the new balance—but the fix now means that three routines
are coupled through the shared variable customer_file, and
keeping track of when the file is open or not is going to start to
get messy. We’re falling into a trap, and things are going to start
going downhill rapidly if we continue on this course. This is not
balanced!

The finish what you start tip tells us that, ideally, the routine
that allocates a resource should also free it. We can apply it here
by refactoring the code slightly:

 def read_customer(file)
 @balance=BigDecimal(file.gets)
 end

 def write_customer(file)
 file.rewind
 file.puts @balance.to_s
 end

 def update_customer(transaction_amount)
 file=File.open(@name + ".rec", "r+") # >--
 read_customer(file) # |
 @balance = @balance.add(transaction_amount,2) # |
 file.close # <--
 end

Instead of holding on to the file reference, we’ve changed the
code to pass it as a parameter. Now all the responsibility for
the file is in the update_customer routine. It opens the file and
(finishing what it starts) closes it before returning. The routine
balances the use of the file: the open and close are in the same
place, and it is apparent that for every open there will be a
corresponding close. The refactoring also removes an ugly
shared variable.

There’s another small but important improvement we can
make. In many modern languages, you can scope the lifetime of
a resource to an enclosed block of some sort. In Ruby, there’s a
variation of the file open that passes in the open file reference to
a block, shown here between the do and the end:

 def update_customer(transaction_amount)
 File.open(@name + ".rec", "r+") do |file| # >--
 read_customer(file) # |
 @balance = @balance.add(transaction_amount,2) # |
 write_customer(file) # |
 end # <--
 end

In this case, at the end of the block the file variable goes out of
scope and the external file is closed. Period. No need to
remember to close the file and release the source, it is
guaranteed to happen for you.

When in doubt, it always pays to reduce scope.

[34]

Tip 41 Act Locally

Balancing Over Time

In this topic we’re mostly looking at ephemeral resources used by your running
process. But you might want to consider what other messes you might be leaving
behind.

For instance, how are your logging files handled? You are creating data and using up
storage space. Is there something in place to rotate the logs and clean them up? How
about for your unofficial debug files you’re dropping? If you’re adding logging records in
a database, is there a similar process in place to expire them? For anything that you
create that takes up a finite resource, consider how to balance it.

What else are you leaving behind?

NEST ALLOCATIONS

The basic pattern for resource allocation can be extended for
routines that need more than one resource at a time. There are
just two more suggestions:

Deallocate resources in the opposite order to that in which you
allocate them. That way you won’t orphan resources if one resource
contains references to another.

When allocating the same set of resources in different places in
your code, always allocate them in the same order. This will reduce
the possibility of deadlock. (If process A claims resource1 and is
about to claim resource2, while process B has claimed resource2 and
is trying to get resource1, the two processes will wait forever.)

It doesn’t matter what kind of resources we’re using—
transactions, network connections, memory, files, threads,
windows—the basic pattern applies: whoever allocates a
resource should be responsible for deallocating it. However, in
some languages we can develop the concept further.

OBJECTS AND EXCEPTIONS

The equilibrium between allocations and deallocations is
reminiscent of an object-oriented class’s constructor and
destructor. The class represents a resource, the constructor
gives you a particular object of that resource type, and the
destructor removes it from your scope.

If you are programming in an object-oriented language, you
may find it useful to encapsulate resources in classes. Each time
you need a particular resource type, you instantiate an object of
that class. When the object goes out of scope, or is reclaimed by
the garbage collector, the object’s destructor then deallocates
the wrapped resource.

This approach has particular benefits when you’re working with
languages where exceptions can interfere with resource
deallocation.

BALANCING AND EXCEPTIONS
Languages that support exceptions can make resource
deallocation tricky. If an exception is thrown, how do you
guarantee that everything allocated prior to the exception is
tidied up? The answer depends to some extent on the language
support. You generally have two choices:

1. Use variable scope (for example, stack variables in C++ or Rust)
2. Use a finally clause in a try…catch block

With usual scoping rules in languages such as C++ or Rust, the
variable’s memory will be reclaimed when the variable goes out
of scope via a return, block exit, or exception. But you can also
hook in to the variable’s destructor to cleanup any external

resources. In this example, the Rust variable named accounts will
automatically close the associated file when it goes out of scope:

 {
 let mut accounts = File::open("mydata.txt")?; // >--
 // use 'accounts' // |
 ... // |
 } // <--
 // 'accounts' is now out of scope, and the file is
 // automatically closed

The other option, if the language supports it, is the finally clause.
A finally clause will ensure that the specified code will run
whether or not an exception was raised in the try…catch block:

 try
 // some dodgy stuff
 catch
 // exception was raised
 finally
 // clean up in either case

However, there is a catch.

An Exception Antipattern

We commonly see folks writing something like this:

 begin
 thing = allocate_resource()
 process(thing)
 finally
 deallocate(thing)
 end

Can you see what’s wrong?

What happens if the resource allocation fails and raises an
exception? The finally clause will catch it, and try to deallocate a

thing that was never allocated.

The correct pattern for handling resource deallocation in an
environment with exceptions is

 thing = allocate_resource()
 begin
 process(thing)
 finally
 deallocate(thing)
 end

WHEN YOU CAN’T BALANCE RESOURCES

There are times when the basic resource allocation pattern just
isn’t appropriate. Commonly this is found in programs that use
dynamic data structures. One routine will allocate an area of
memory and link it into some larger structure, where it may stay
for some time.

The trick here is to establish a semantic invariant for memory
allocation. You need to decide who is responsible for data in an
aggregate data structure. What happens when you deallocate
the top-level structure? You have three main options:

The top-level structure is also responsible for freeing any
substructures that it contains. These structures then recursively
delete data they contain, and so on.

The top-level structure is simply deallocated. Any structures that it
pointed to (that are not referenced elsewhere) are orphaned.

The top-level structure refuses to deallocate itself if it contains any
substructures.

The choice here depends on the circumstances of each
individual data structure. However, you need to make it explicit

for each, and implement your decision consistently.
Implementing any of these options in a procedural language
such as C can be a problem: data structures themselves are not
active. Our preference in these circumstances is to write a
module for each major structure that provides standard
allocation and deallocation facilities for that structure. (This
module can also provide facilities such as debug printing,
serialization, deserialization, and traversal hooks.)

CHECKING THE BALANCE

Because Pragmatic Programmers trust no one, including
ourselves, we feel that it is always a good idea to build code that
actually checks that resources are indeed freed appropriately.
For most applications, this normally means producing wrappers
for each type of resource, and using these wrappers to keep
track of all allocations and deallocations. At certain points in
your code, the program logic will dictate that the resources will
be in a certain state: use the wrappers to check this. For
example, a long-running program that services requests will
probably have a single point at the top of its main processing
loop where it waits for the next request to arrive. This is a good
place to ensure that resource usage has not increased since the
last execution of the loop.

At a lower, but no less useful level, you can invest in tools that
(among other things) check your running programs for memory
leaks.

RELATED SECTIONS INCLUDE

Topic 24, Dead Programs Tell No Lies

Topic 30, Transforming Programming

Topic 33, Breaking Temporal Coupling

CHALLENGES

Although there are no guaranteed ways of ensuring that you always
free resources, certain design techniques, when applied
consistently, will help. In the text we discussed how establishing a
semantic invariant for major data structures could direct memory
deallocation decisions. Consider how Topic 23, Design by Contract,
could help refine this idea.

Exercise 17 (possible answer)

Some C and C++ developers make a point of setting a pointer to
NULL after they deallocate the memory it references. Why is this
a good idea?

Exercise 18 (possible answer)

Some Java developers make a point of setting an object variable
to NULL after they have finished using the object. Why is this a
good idea?

It’s tough to make
predictions, especially
about the future.

Lawrence "Yogi" Berra, after
a Danish Proverb

Topic 27 Don’t Outrun Your Headlights

It’s late at night, dark, pouring
rain. The two-seater whips around
the tight curves of the twisty little
mountain roads, barely holding
the corners. A hairpin comes up
and the car misses it, crashing
though the skimpy guardrail and
soaring to a fiery crash in the
valley below. State troopers arrive

on the scene, and the senior officer sadly shakes their head.
“Must have outrun their headlights.”

Had the speeding two-seater been going faster than the speed of
light? No, that speed limit is firmly fixed. What the officer
referred to was the driver’s ability to stop or steer in time in
response to the headlight’s illumination.

Headlights have a certain limited range, known as the throw
distance. Past that point, the light spread is too diffuse to be
effective. In addition, headlights only project in a straight line,
and won’t illuminate anything off-axis, such as curves, hills, or
dips in the road. According to the National Highway Traffic
Safety Administration, the average distance illuminated by low-
beam headlights is about 160 feet. Unfortunately, stopping
distance at 40mph is 189 feet, and at 70mph a whopping 464
feet. So indeed, it’s actually pretty easy to outrun your
headlights.

[35]

In software development, our “headlights” are similarly limited.
We can’t see too far ahead into the future, and the further off-
axis you look, the darker it gets. So Pragmatic Programmers
have a firm rule:

Tip 42 Take Small Steps—Always

Always take small, deliberate steps, checking for feedback and
adjusting before proceeding. Consider that the rate of feedback
is your speed limit. You never take on a step or a task that’s “too
big.”

What do we mean exactly by feedback? Anything that
independently confirms or disproves your action. For example:

Results in a REPL provide feedback on your understanding of APIs
and algorithms

Unit tests provide feedback on your last code change

User demo and conversation provide feedback on features and
usability

What’s a task that’s too big? Any task that requires “fortune
telling.” Just as the car headlights have limited throw, we can
only see into the future perhaps one or two steps, maybe a few
hours or days at most. Beyond that, you can quickly get past
educated guess and into wild speculation. You might find
yourself slipping into fortune telling when you have to:

Estimate completion dates months in the future

Plan a design for future maintenance or extendability

Guess user’s future needs

Guess future tech availability

But, we hear you cry, aren’t we supposed to design for future
maintenance? Yes, but only to a point: only as far ahead as you
can see. The more you have to predict what the future will look
like, the more risk you incur that you’ll be wrong. Instead of
wasting effort designing for an uncertain future, you can always
fall back on designing your code to be replaceable. Make it easy
to throw out your code and replace it with something better
suited. Making code replaceable will also help with cohesion,
coupling, and DRY, leading to a better design overall.

Even though you may feel confident of the future, there’s always
the chance of a black swan around the corner.

BLACK SWANS

In his book, The Black Swan: The Impact of the Highly
Improbable [Tal10], Nassim Nicholas Taleb posits that all
significant events in history have come from high-profile, hard-
to-predict, and rare events that are beyond the realm of normal
expectations. These outliers, while statistically rare, have
disproportionate effects. In addition, our own cognitive biases
tend to blind us to changes creeping up on the edges of our work
(see Topic 4, Stone Soup and Boiled Frogs).

Around the time of the first edition of The Pragmatic
Programmer, debate raged in computer magazines and online
forums over the burning question: “Who would win the desktop
GUI wars, Motif or OpenLook?” It was the wrong question.
Odds are you’ve probably never heard of these technologies as
neither “won” and the browser-centric web quickly dominated
the landscape.

[36]

Tip 43 Avoid Fortune-Telling

Much of the time, tomorrow looks a lot like today. But don’t
count on it.

RELATED SECTIONS INCLUDE

Topic 12, Tracer Bullets

Topic 13, Prototypes and Post-it Notes

Topic 40, Refactoring

Topic 41, Test to Code

Topic 48, The Essence of Agility

Topic 50, Coconuts Don’t Cut It

Copyright © 2020 Pearson Education, Inc.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Footnotes

Based in part on earlier work by Dijkstra, Floyd, Hoare, Wirth, and others.

In C and C++ these are usually implemented as macros. In Java, assertions are disabled
by default. Invoke the Java VM with the –enableassertions flag to enable them, and leave
them enabled.

http://www.eps.mcgill.ca/jargon/jargon.html#heisenbug

For a discussion of the dangers of coupled code, see Topic 28, Decoupling.

See the tip here.

Per the NHTSA, Stopping Distance = Reaction Distance + Braking Distance, assuming
an average reaction time of 1.5s and deceleration of 17.02ft/s².

Motif and OpenLook were GUI standards for X-Windows based Unix workstations.

Chapter 5

Bend, or Break

Life doesn’t stand still. Neither can the code that we write. In
order to keep up with today’s near-frantic pace of change, we
need to make every effort to write code that’s as loose—as
flexible—as possible. Otherwise we may find our code quickly
becoming outdated, or too brittle to fix, and may ultimately be
left behind in the mad dash toward the future.

Back in Topic 11, Reversibility we talked about the perils of
irreversible decisions. In this chapter, we’ll tell you how to make
reversible decisions, so your code can stay flexible and
adaptable in the face of an uncertain world.

First we look at coupling—the dependencies between bits of
code. Topic 28, Decoupling shows how to keep separate
concepts separate, decreasing coupling.

Next, we’ll look at different techniques you can use when Topic
29, Juggling the Real World. We’ll examine four different
strategies to help manage and react to events—a critical aspect
of modern software applications.

Traditional procedural and object-oriented code might be too
tightly coupled for your purposes. In Topic 30, Transforming

Programming, we’ll take advantage of the more flexible and
clearer style offered by function pipelines, even if your language
doesn’t support them directly.

Common object-oriented style can tempt you with another trap.
Don’t fall for it, or you’ll end up paying a hefty Topic 31,
Inheritance Tax. We’ll explore better alternatives to keep your
code flexible and easier to change.

And of course a good way to stay flexible is to write less code.
Changing code leaves you open to the possibility of introducing
new bugs. Topic 32, Configuration will explain how to move
details out of the code completely, where they can be changed
more safely and easily.

All these techniques will help you write code that bends and
doesn’t break.

When we try to pick
out anything by itself,
we find it hitched to
everything else in the
Universe.

John Muir, My First Summer
in the Sierra

Topic 28 Decoupling

In Topic 8, The Essence of Good
Design we claim that using good
design principles will make the
code you write easy to change.
Coupling is the enemy of change,
because it links together things
that must change in parallel. This
makes change more difficult:
either you spend time tracking
down all the parts that need
changing, or you spend time

wondering why things broke when you changed “just one thing”
and not the other things to which it was coupled.

When you are designing something you want to be rigid, a
bridge or a tower perhaps, you couple the components together:

images/links-01.png

The links work together to make the structure rigid.

Compare that with something like this:

images/links-02.png

Here there’s no structural rigidity: individual links can change
and others just accommodate it.

When you’re designing bridges, you want them to hold their
shape; you need them to be rigid. But when you’re designing
software that you’ll want to change, you want exactly the
opposite: you want it to be flexible. And to be flexible, individual
components should be coupled to as few other components as
possible.

And, to make matters worse, coupling is transitive: if A is
coupled to B and C, and B is coupled to M and N, and C to X and
Y, then A is actually coupled to B, C, M, N, X, and Y.

This means there’s a simple principle you should follow:

Tip 44 Decoupled Code Is Easier to Change

Given that we don’t normally code using steel beams and rivets,
just what does it mean to decouple code? In this section we’ll
talk about:

Train wrecks—chains of method calls

Globalization—the dangers of static things

Inheritance—why subclassing is dangerous

To some extent this list is artificial: coupling can occur just
about any time two pieces of code share something, so as you
read what follows keep an eye out for the underlying patterns so
you can apply them to your code. And keep a lookout for some
of the symptoms of coupling:

Wacky dependencies between unrelated modules or libraries.

“Simple” changes to one module that propagate through unrelated
modules in the system or break stuff elsewhere in the system.

Developers who are afraid to change code because they aren’t sure
what might be affected.

Meetings where everyone has to attend because no one is sure who
will be affected by a change.

TRAIN WRECKS
We’ve all seen (and probably written) code like this:

 public void applyDiscount(customer, order_id, discount) {
 totals = customer
 .orders
 .find(order_id)
 .getTotals();
 totals.grandTotal = totals.grandTotal - discount;
 totals.discount = discount;
 }

We’re getting a reference to some orders from a customer
object, using that to find a particular order, and then getting the
set of totals for the order. Using those totals, we subtract the
discount from the order grand total and also update them with
that discount.

This chunk of code is traversing five levels of abstraction, from
customer to total amounts. Ultimately our top-level code has to

know that a customer object exposes orders, that the orders
have a find method that takes an order id and returns an order,
and that the order object has a totals object which has getters and
setters for grand totals and discounts. That’s a lot of implicit
knowledge. But worse, that’s a lot of things that cannot change
in the future if this code is to continue to work. All the cars in a
train are coupled together, as are all the methods and attributes
in a train wreck.

Let’s imagine that the business decides that no order can have a
discount of more than 40%. Where would we put the code that
enforces that rule?

You might say it belongs in the applyDiscount function we just
wrote. That’s certainly part of the answer. But with the code the
way it is now, you can’t know that this is the whole answer. Any
piece of code, anywhere, could set fields in the totals object, and
if the maintainer of that code didn’t get the memo, it wouldn’t
be checking against the new policy.

One way to look at this is to think about responsibilities. Surely
the totals object should be responsible for managing the totals.
And yet it isn’t: it’s really just a container for a bunch of fields
that anyone can query and update.

The fix for that is to apply something we call:

Tip 45 Tell, Don’t Ask

This principle says that you shouldn’t make decisions based on
the internal state of an object and then update that object.
Doing so totally destroys the benefits of encapsulation and, in

doing so, spreads the knowledge of the implementation
throughout the code. So the first fix for our train wreck is to
delegate the discounting to the total object:

 public void applyDiscount(customer, order_id, discount) {
 customer
 .orders
 .find(order_id)
 .getTotals()
 .applyDiscount(discount);
 }

We have the same kind of tell-don’t-ask (TDA) issue with the
customer object and its orders: we shouldn’t fetch its list of
orders and search them. We should instead get the order we
want directly from the customer:

 public void applyDiscount(customer, order_id, discount) {
 customer
 .findOrder(order_id)
 .getTotals()
 .applyDiscount(discount);
 }

The same thing applies to our order object and its totals. Why
should the outside world have to know that the implementation
of an order uses a separate object to store its totals?

 public void applyDiscount(customer, order_id, discount) {
 customer
 .findOrder(order_id)
 .applyDiscount(discount);
 }

And this is where we’d probably stop.

At this point you might be thinking that TDA would make us
add an applyDiscountToOrder(order_id) method to customers. And, if

followed slavishly, it would.

But TDA is not a law of nature; it’s just a pattern to help us
recognize problems. In this case, we’re comfortable exposing the
fact that a customer has orders, and that we can find one of
those orders by asking the customer object for it. This is a
pragmatic decision.

In every application there are certain top-level concepts that are
universal. In this application, those concepts include customers
and orders. It makes no sense to hide orders totally inside
customer objects: they have an existence of their own. So we
have no problem creating APIs that expose order objects.

The Law of Demeter

People often talk about something called the Law of Demeter,
or LoD, in relation to coupling. The LoD is a set of guidelines
written in the late ’80s by Ian Holland. He created them to help
developers on the Demeter Project keep their functions cleaner
and decoupled.

The LoD says that a method defined in a class C should only
call:

Other instance methods in C

Its parameters

Methods in objects that it creates, both on the stack and in the heap

Global variables

In the first edition of this book we spent some time describing
the LoD. In the intervening 20 years the bloom has faded on
that particular rose. We now don’t like the “global variable”

[37]

clause (for reasons we’ll go into in the next section). We also
discovered that it’s difficult to use this in practice: it’s a little like
having to parse a legal document whenever you call a method.

However, the principle is still sound. We just recommend a
somewhat simpler way of expressing almost the same thing:

Tip 46 Don’t Chain Method Calls

Try not to have more than one “.” when you access something.
And access something also covers cases where you use
intermediate variables, as in the following code:

 # This is pretty poor style
 amount = customer.orders.last().totals().amount;

 # and so is this…
 orders = customer.orders;
 last = orders.last();
 totals = last.totals();
 amount = totals.amount;

There’s a big exception to the one-dot rule: the rule doesn’t
apply if the things you’re chaining are really, really unlikely to
change. In practice, anything in your application should be
considered likely to change. Anything in a third-party library
should be considered volatile, particularly if the maintainers of
that library are known to change APIs between releases.
Libraries that come with the language, however, are probably
pretty stable, and so we’d be happy with code such as:

 people
 .sort_by {|person| person.age }
 .first(10)
 .map {| person | person.name }

That Ruby code worked when we wrote the first edition, 20
years ago, and will likely still work when we enter the home for
old programmers (any day now…).

Chains and Pipelines

In Topic 30, Transforming Programming we talk about
composing functions into pipelines. These pipelines transform
data, passing it from one function to the next. This is not the
same as a train wreck of method calls, as we are not relying on
hidden implementation details.

That’s not to say that pipelines don’t introduce some coupling:
they do. The format of the data returned by one function in a
pipeline must be compatible with the format accepted by the
next.

Our experience is that this form of coupling is far less a barrier
to changing the code than the form introduced by train wrecks.

THE EVILS OF GLOBALIZATION

Globally accessible data is an insidious source of coupling
between application components. Each piece of global data acts
as if every method in your application suddenly gained an
additional parameter: after all, that global data is available
inside every method.

Globals couple code for many reasons. The most obvious is that
a change to the implementation of the global potentially affects
all the code in the system. In practice, of course, the impact is
fairly limited; the problem really comes down to knowing that
you’ve found every place you need to change.

Global data also creates coupling when it comes to teasing your

code apart.

Much has been made of the benefits of code reuse. Our
experience has been that reuse should probably not be a
primary concern when creating code, but the thinking that goes
into making code reusable should be part of your coding
routine. When you make code reusable, you give it clean
interfaces, decoupling it from the rest of your code. This allows
you to extract a method or module without dragging everything
else along with it. And if your code uses global data, then it
becomes difficult to split it out from the rest.

You’ll see this problem when you’re writing unit tests for code
that uses global data. You’ll find yourself writing a bunch of
setup code to create a global environment just to allow your test
to run.

Tip 47 Avoid Global Data

Global Data Includes Singletons

In the previous section we were careful to talk about global data
and not global variables. That’s because people often tell us
“Look! No global variables. I wrapped it all as instance data in a
singleton object or global module.”

Try again, Skippy. If all you have is a singleton with a bunch of
exported instance variables, then it’s still just global data. It just
has a longer name.

So then folks take this singleton and hide all the data behind
methods. Instead of coding Config.log_level they now say
Config.log_level() or Config.getLogLevel(). This is better, because it

means that your global data has a bit of intelligence behind it. If
you decide to change the representation of log levels, you can
maintain compatibility by mapping between the new and old in
the Config API. But you still have only the one set of
configuration data.

Global Data Includes External Resources

Any mutable external resource is global data. If your application
uses a database, datastore, file system, service API, and so on, it
risks falling into the globalization trap. Again, the solution is to
make sure you always wrap these resources behind code that
you control.

Tip 48
If It’s Important Enough to Be Global, Wrap It in
an API

INHERITANCE ADDS COUPLING

The misuse of subclassing, where a class inherits state and
behavior from another class, is so important that we discuss it
in its own section, Topic 31, Inheritance Tax.

AGAIN, IT’S ALL ABOUT CHANGE
Coupled code is hard to change: alterations in one place can
have secondary effects elsewhere in the code, and often in hard-
to-find places that only come to light a month later in
production.

Keeping your code shy: having it only deal with things it directly
knows about, will help keep your applications decoupled, and
that will make them more amenable to change.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 9, DRY—The Evils of Duplication

Topic 10, Orthogonality

Topic 11, Reversibility

Topic 29, Juggling the Real World

Topic 30, Transforming Programming

Topic 31, Inheritance Tax

Topic 32, Configuration

Topic 33, Breaking Temporal Coupling

Topic 34, Shared State Is Incorrect State

Topic 35, Actors and Processes

Topic 36, Blackboards

We discuss Tell, Don’t Ask in our 2003 Software Construction
article The Art of Enbugging.[38]

Things don’t just
happen; they are made
to happen.

John F. Kennedy

Topic 29 Juggling the Real World

In the old days, when your authors
still had their boyish good looks,
computers were not particularly
flexible. We’d typically organize
the way we interacted with them
based on their limitations.

Today, we expect more: computers
have to integrate into our world,

not the other way around. And our world is messy: things are
constantly happening, stuff gets moved around, we change our
minds, …. And the applications we write somehow have to work
out what to do.

This section is all about writing these responsive applications.

We’ll start off with the concept of an event.

EVENTS

An event represents the availability of information. It might
come from the outside world: a user clicking a button, or a stock
quote update. It might be internal: the result of a calculation is
ready, a search finishes. It can even be something as trivial as
fetching the next element in a list.

Whatever the source, if we write applications that respond to
events, and adjust what they do based on those events, those

applications will work better in the real world. Their users will
find them to be more interactive, and the applications
themselves will make better use of resources.

But how can we write these kinds of applications? Without some
kind of strategy, we’ll quickly find ourselves confused, and our
applications will be a mess of tightly coupled code.

Let’s look at four strategies that help.

1. Finite State Machines
2. The Observer Pattern
3. Publish/Subscribe
4. Reactive Programming and Streams

FINITE STATE MACHINES

Dave finds that he writes code using a Finite State Machine
(FSM) just about every week. Quite often, the FSM
implementation will be just a couple of lines of code, but those
few lines help untangle a whole lot of potential mess.

Using an FSM is trivially easy, and yet many developers shy
away from them. There seems to be a belief that they are
difficult, or that they only apply if you’re working with
hardware, or that you need to use some hard-to-understand
library. None of these are true.

The Anatomy of a Pragmatic FSM

A state machine is basically just a specification of how to handle
events. It consists of a set of states, one of which is the current
state. For each state, we list the events that are significant to
that state. For each of those events, we define the new current
state of the system.

For example, we may be receiving multipart messages from a
websocket. The first message is a header. This is followed by any
number of data messages, followed by a trailing message. This
could be represented as an FSM like this:

images/events_simple_fsm.png

We start in the “Initial state.” If we receive a header message,
we transition to the “Reading message” state. If we receive
anything else while we’re in the initial state (the line labeled
with an asterisk) we transition to the “Error” state and we’re
done.

While we’re in the “Reading message” state, we can accept
either data messages, in which case we continue reading in the
same state, or we can accept a trailer message, which transitions
us to the “Done” state. Anything else causes a transition to the
error state.

The neat thing about FSMs is that we can express them purely
as data. Here’s a table representing our message parser:

images/event_simple_fsm_table.png

The rows in the table represent the states. To find out what to
do when an event occurs, look up the row for the current state,
scan along for the column representing the event, the contents
of that cell are the new state.

The code that handles it is equally simple:

event/simple_fsm.rb

1
:

TRANSITIONS = {

-

 initial: {header: :reading},

-

 reading: {data: :reading, trailer: :done},

-

}

5
:

-

state = :initial

-

-

while state != :done && state != :error

-

 msg = get_next_message()

1
0
:

 state = TRANSITIONS[state][msg.msg_type] || :error

-

end

The code that implements the transitions between states is on
line 10. It indexes the transition table using the current state,
and then indexes the transitions for that state using the message
type. If there is no matching new state, it sets the state to :error.

Adding Actions

A pure FSM, such as the one we were just looking at, is an event
stream parser. Its only output is the final state. We can beef it
up by adding actions that are triggered on certain transitions.

For example, we might need to extract all of the strings in a
source file. A string is text between quotes, but a backslash in a
string escapes the next character, so "Ignore \"quotes\"" is a single
string. Here’s an FSM that does this:

images/event_string_fsm.png

This time, each transition has two labels. The top one is the

event that triggers it, and the bottom one is the action to take as
we move between states.

We’ll express this in a table, as we did last time. However, in
this case each entry in the table is a two-element list containing
the next state and the name of an action:

event/strings_fsm.rb

 TRANSITIONS = {

 # current new state action to take
 #---

 look_for_string: {
 '"' => [:in_string, :start_new_string],
 :default => [:look_for_string, :ignore],
 },

 in_string: {
 '"' => [:look_for_string, :finish_current_string],
 '\\' => [:copy_next_char, :add_current_to_string],
 :default => [:in_string, :add_current_to_string],
 },

 copy_next_char: {
 :default => [:in_string, :add_current_to_string],
 },
 }

We’ve also added the ability to specify a default transition, taken
if the event doesn’t match any of the other transitions for this
state.

Now let’s look at the code:

event/strings_fsm.rb

 state = :look_for_string

result = []

 while ch = STDIN.getc
 state, action = TRANSITIONS[state][ch] || TRANSITIONS[state][:default]
 case action
 when :ignore
 when :start_new_string
 result = []
 when :add_current_to_string
 result << ch
 when :finish_current_string
 puts result.join
 end
 end

This is similar to the previous example, in that we loop through
the events (the characters in the input), triggering transitions.
But it does more than the previous code. The result of each
transition is both a new state and the name of an action. We use
the action name to select the code to run before we go back
around the loop.

This code is very basic, but it gets the job done. There are many
other variants: the transition table could use anonymous
functions or function pointers for the actions, you could wrap
the code that implements the state machine in a separate class,
with its own state, and so on.

There’s nothing to say that you have to process all the state
transitions at the same time. If you’re going through the steps to
sign up a user on your app, there’s likely to be a number of
transitions as they enter their details, validate their email, agree
to the 107 different legislated warnings that online apps must
now give, and so on. Keeping the state in external storage, and
using it to drive a state machine, is a great way to handle these
kind of workflow requirements.

State Machines Are a Start

State machines are underused by developers, and we’d like to
encourage you to look for opportunities to apply them. But they
don’t solve all the problems associated with events. So let’s
move on to some other ways of looking at the problems of
juggling events.

THE OBSERVER PATTERN

In the observer pattern we have a source of events, called the
observable and a list of clients, the observers, who are
interested in those events.

An observer registers its interest with the observable, typically
by passing a reference to a function to be called. Subsequently,
when the event occurs, the observable iterates down its list of
observers and calls the function that each passed it. The event is
given as a parameter to that call.

Here’s a simple example in Ruby. The Terminator module is used
to terminate the application. Before it does so, however, it
notifies all its observers that the application is going to exit.
They might use this notification to tidy up temporary resources,
commit data, and so on:

event/observer.rb

 module Terminator
 CALLBACKS = []

 def self.register(callback)
 CALLBACKS << callback
 end

 def self.exit(exit_status)
 CALLBACKS.each { |callback| callback.(exit_status) }

[39]

 exit!(exit_status)
 end
 end

 Terminator.register(-> (status) { puts "callback 1 sees #{status}" })
 Terminator.register(-> (status) { puts "callback 2 sees #{status}" })

 Terminator.exit(99)

 $ ruby event/observer.rb
 callback 1 sees 99
 callback 2 sees 99

There’s not much code involved in creating an observable: you
push a function reference onto a list, and then call those
functions when the event occurs. This is a good example of
when not to use a library.

The observer/observable pattern has been used for decades, and
it has served us well. It is particularly prevalent in user interface
systems, where the callbacks are used to inform the application
that some interaction has occurred.

But the observer pattern has a problem: because each of the
observers has to register with the observable, it introduces
coupling. In addition, because in the typical implementation the
callbacks are handled inline by the observable, synchronously, it
can introduce performance bottlenecks.

This is solved by the next strategy, Publish/Subscribe.

PUBLISH/SUBSCRIBE
Publish/Subscribe (pubsub) generalizes the observer pattern, at
the same time solving the problems of coupling and
performance.

In the pubsub model, we have publishers and subscribers.
These are connected via channels. The channels are
implemented in a separate body of code: sometimes a library,
sometimes a process, and sometimes a distributed
infrastructure. All this implementation detail is hidden from
your code.

Every channel has a name. Subscribers register interest in one
or more of these named channels, and publishers write events
to them. Unlike the observer pattern, the communication
between the publisher and subscriber is handled outside your
code, and is potentially asynchronous.

Although you could implement a very basic pubsub system
yourself, you probably don’t want to. Most cloud service
providers have pubsub offerings, allowing you to connect
applications around the world. Every popular language will
have at least one pubsub library.

Pubsub is a good technology for decoupling the handling of
asynchronous events. It allows code to be added and replaced,
potentially while the application is running, without altering
existing code. The downside is that it can be hard to see what is
going on in a system that uses pubsub heavily: you can’t look at
a publisher and immediately see which subscribers are involved
with a particular message.

Compared to the observer pattern, pubsub is a great example of
reducing coupling by abstracting up through a shared interface
(the channel). However, it is still basically just a message
passing system. Creating systems that respond to combinations
of events will need more than this, so let’s look at ways we can
add a time dimension to event processing.

REACTIVE PROGRAMMING, STREAMS, AND EVENTS

If you’ve ever used a spreadsheet, then you’ll be familiar with
reactive programming. If a cell contains a formula which refers
to a second cell, then updating that second cell causes the first
to update as well. The values react as the values they use
change.

There are many frameworks that can help with this kind of
data-level reactivity: in the realm of the browser React and
Vue.js are current favorites (but, this being JavaScript, this
information will be out-of-date before this book is even
printed).

It’s clear that events can also be used to trigger reactions in
code, but it isn’t necessarily easy to plumb them in. That’s
where streams come in.

Streams let us treat events as if they were a collection of data.
It’s as if we had a list of events, which got longer when new
events arrive. The beauty of that is that we can treat streams
just like any other collection: we can manipulate, combine,
filter, and do all the other data-ish things we know so well. We
can even combine event streams and regular collections. And
streams can be asynchronous, which means your code gets the
opportunity to respond to events as they arrive.

The current de facto baseline for reactive event handling is
defined on the site http://reactivex.io, which defines a
language-agnostic set of principles and documents some
common implementations. Here we’ll use the RxJs library for
JavaScript.

Our first example takes two streams and zips them together: the

result is a new stream where each element contains one item
from the first input stream and one item from the other. In this
case, the first stream is simply a list of five animal names. The
second stream is more interesting: it’s an interval timer which
generates an event every 500ms. Because the streams are
zipped together, a result is only generated when data is available
on both, and so our result stream only emits a value every half
second:

event/rx0/index.js

 import * as Observable from 'rxjs'
 import { logValues } from "../rxcommon/logger.js"

 let animals = Observable.of("ant", "bee", "cat", "dog", "elk")
 let ticker = Observable.interval(500)

 let combined = Observable.zip(animals, ticker)

 combined.subscribe(next => logValues(JSON.stringify(next)))

This code uses a simple logging function which adds items to
a list in the browser window. Each item is timestamped with the
time in milliseconds since the program started to run. Here’s
what it shows for our code:

[40]

images/events_rxjs_0.png

Notice the timestamps: we’re getting one event from the stream
every 500ms. Each event contains a serial number (created by
the interval observable) and the name of the next animal from the
list. Watching it live in a browser, the log lines appear at every
half second.

Event streams are normally populated as events occur, which
implies that the observables that populate them can run in
parallel. Here’s an example that fetches information about users
from a remote site. For this we’ll use https://reqres.in, a public
site that provides an open REST interface. As part of its API, we
can fetch data on a particular (fake) user by performing a GET
request to users/«id». Our code fetches the users with the IDs 3, 2,
and 1:

event/rx1/index.js

 import * as Observable from 'rxjs'
 import { mergeMap } from 'rxjs/operators'
 import { ajax } from 'rxjs/ajax'

 import { logValues } from "../rxcommon/logger.js"

 let users = Observable.of(3, 2, 1)

 let result = users.pipe(
 mergeMap((user) => ajax.getJSON(`https://reqres.in/api/users/${user}`))
)

 result.subscribe(
 resp => logValues(JSON.stringify(resp.data)),
 err => console.error(JSON.stringify(err))
)

The internal details of the code are not too important. What’s
exciting is the result, shown in the following screenshot:

images/events_three_users.png

Look at the timestamps: the three requests, or three separate
streams, were processed in parallel, The first to come back, for
id 2, took 82ms, and the next two came back 50 and 51ms later.

Streams of Events Are Asynchronous Collections

In the previous example, our list of user IDs (in the observable
users) was static. But it doesn’t have to be. Perhaps we want to
collect this information when people log in to our site. All we
have to do is to generate an observable event containing their
user ID when their session is created, and use that observable
instead of the static one. We’d then be fetching details about the

users as we received these IDs, and presumably storing them
somewhere.

This is a very powerful abstraction: we no longer need to think
about time as being something we have to manage. Event
streams unify synchronous and asynchronous processing
behind a common, convenient API.

EVENTS ARE UBIQUITOUS

Events are everywhere. Some are obvious: a button click, a
timer expiring. Other are less so: someone logging in, a line in a
file matching a pattern. But whatever their source, code that’s
crafted around events can be more responsive and better
decoupled than its more linear counterpart.

RELATED SECTIONS INCLUDE

Topic 28, Decoupling

Topic 36, Blackboards

EXERCISES
Exercise 19 (possible answer)

In the FSM section we mentioned that you could move the
generic state machine implementation into its own class. That
class would probably be initialized by passing in a table of
transitions and an initial state.

Try implementing the string extractor that way.

Exercise 20 (possible answer)

Which of these technologies (perhaps in combination) would be
a good fit for the following situations:

If you receive three network interface down events within five
minutes, notify the operations staff.

If it is after sunset, and there is motion detected at the bottom of
the stairs followed by motion detected at the top of the stairs, turn
on the upstairs lights.

You want to notify various reporting systems that an order was
completed.

In order to determine whether a customer qualifies for a car loan,
the application needs to send requests to three backend services
and wait for the responses.

If you can’t describe
what you are doing as
a process, you don’t
know what you’re
doing.

W. Edwards Deming, (attr)

Topic 30 Transforming Programming

All programs transform data,
converting an input into an output.
And yet when we think about
design, we rarely think about
creating transformations. Instead
we worry about classes and
modules, data structures and
algorithms, languages and
frameworks.

We think that this focus on code
often misses the point: we need to get back to thinking of
programs as being something that transforms inputs into
outputs. When we do, many of the details we previously worried
about just evaporate. The structure becomes clearer, the error
handling more consistent, and the coupling drops way down.

To start our investigation, let’s take the time machine back to
the 1970s and ask a Unix programmer to write us a program
that lists the five longest files in a directory tree, where longest
means “having the largest number of lines.”

You might expect them to reach for an editor and start typing in
C. But they wouldn’t, because they are thinking about this in
terms of what we have (a directory tree) and what we want (a
list of files). Then they’d go to a terminal and type something
like:

 $ find . -type f | xargs wc -l | sort -n | tail -5

This is a series of transformations:

find . -type f
Write a list of all the files (-type f) in or below the current
directory (.) to standard output.

xargs wc -l
Read lines from standard input and arrange for them all
to be passed as arguments to the command wc -l. The wc

program with the -l option counts the number of lines in
each of its arguments and writes each result as “count
filename” to standard output.

sort -n
Sort standard input assuming each line starts with a
number (-n), writing the result to standard output.

tail -5
Read standard input and write just the last five lines to
standard output.

Run this in our book’s directory and we get

 470 ./test_to_build.pml
 487 ./dbc.pml
 719 ./domain_languages.pml
 727 ./dry.pml
 9561 total

That last line is the total number of lines in all the files (not just
those shown), because that’s what wc does. We can strip it off by
requesting one more line from tail, and then ignoring the last
line:

 $ find . -type f | xargs wc -l | sort -n | tail -6 | head -5
 470 ./debug.pml
 470 ./test_to_build.pml
 487 ./dbc.pml
 719 ./domain_languages.pml
 727 ./dry.pml

images/wc-pipeline.png

Figure 1. The find pipeline as a series of
transformations

Let’s look at this in terms of the data that flows between the
individual steps. Our original requirement, “top 5 files in terms
of lines,” becomes a series of transformations (also show in the
figure).

directory name
→ list of files
→ list with line numbers
→ sorted list
→ highest five + total
→ highest five

It’s almost like an industrial assembly line: feed raw data in one

end and the finished product (information) comes out the other.

And we like to think about all code this way.

Tip 49
Programming Is About Code, But Programs Are
About Data

FINDING TRANSFORMATIONS

Sometimes the easiest way to find the transformations is to start
with the requirement and determine its inputs and outputs.
Now you’ve defined the function representing the overall
program. You can then find steps that lead you from input to
output. This is a top-down approach.

For example, you want to create a website for folks playing word
games that finds all the words that can be made from a set of
letters. Your input here is a set of letters, and your output is a
list of three-letter words, four-letter words, and so on:

"lvyin" is transformed to →
3 => ivy, lin, nil, yin

4 => inly, liny, viny

5 => vinyl

(Yes, they are all words, at least according to the macOS
dictionary.)

The trick behind the overall application is simple: we have a
dictionary which groups words by a signature, chosen so that all

words containing the same letters will have the same signature.
The simplest signature function is just the sorted list of letters
in the word. We can then look up an input string by generating a
signature for it, and then seeing which words (if any) in the
dictionary have that same signature.

Thus the anagram finder breaks down into four separate
transformations:

Ste
p

Transformation Sample data

Step
0:

Initial input "ylvin"

Step
1:

All combinations of three or more letters
 vin, viy,
 vil, vny, vnl, vyl, iny, inl, iyl,
nyl, viny,
 vinl, viyl, vnyl, inyl, vinyl

Step
2:

Signatures of the combinations
 inv, ivy, ilv, nvy,
 lnv, lvy, iny, iln, ily, lny, invy,
ilnv, ilvy,
 lnvy, ilny, ilnvy

Step
3: List of all dictionary words which match

any of the
 signatures

 ivy, yin, nil, lin, viny, liny, inly,
vinyl

Step
4:

 Words grouped by length
3 => ivy, lin, nil, yin

4 => inly, liny, viny

5 => vinyl

Transformations All the Way Down

Let’s start by looking at step 1, which takes a word and creates a
list of all combinations of three or more letters. This step can
itself be expressed as a list of transformations:

Step Transformation Sample data

Step 1.0: Initial input "vinyl"

Step 1.1: Convert to characters
 v, i, n, y, l

Step 1.2: Get all subsets

 [],
 [v],
 [i],
 …
 [v,i],
 [v,n],
 [v,y],
 …
 [v,i,n],
 [v,i,y],
 …
 [v,n,y,l],
 [i,n,y,l],
 [v,i,n,y,l]

Step 1.3:
 Only those longer than three characters [v,i,n],

 [v,i,y],
 …
 [i,n,y,l],
 [v,i,n,y,l]

Step 1.4: Convert back to strings [vin,viy, … inyl,vinyl]

We’ve now reached the point where we can easily implement
each transformation in code (using Elixir in this case):

function-pipelines/anagrams/lib/anagrams.ex

 defp all_subsets_longer_than_three_characters(word) do
 word
 |> String.codepoints()
 |> Comb.subsets()
 |> Stream.filter(fn subset -> length(subset) >= 3 end)
 |> Stream.map(&List.to_string(&1))
 end

What’s with the |> Operator?

Elixir, along with many other functional languages, has a
pipeline operator, sometimes called a forward pipe or just a
pipe. All it does is take the value on its left and insert it as the
first parameter of the function on its right, so

 "vinyl" |> String.codepoints |> Comb.subsets()

is the same as writing

 Comb.subsets(String.codepoints("vinyl"))

(Other languages may inject this piped value as the last
parameter of the next function—it largely depends on the style
of the built-in libraries.)

You might think that this is just syntactic sugar. But in a very
real way the pipeline operator is a revolutionary opportunity to
think differently. Using a pipeline means that you’re
automatically thinking in terms of transforming data; each time
you see |> you’re actually seeing a place where data is flowing
between one transformation and the next.

Many languages have something similar: Elm, F#, and Swift
have |>, Clojure has -> and ->> (which work a little differently), R
has %>%. Haskell both has pipe operators and makes it easy to
declare new ones. As we write this, there’s talk of adding |> to
JavaScript.

[41]

If your current language supports something similar, you’re in
luck. If it doesn’t, see Language X Doesn’t Have Pipelines.

Anyway, back to the code.

Keep on Transforming…

Now look at Step 2 of the main program, where we convert the
subsets into signatures. Again, it’s a simple transformation—a
list of subsets becomes a list of signatures:

Step Transformation Sample data

Step 2.0: initial input vin, viy, … inyl, vinyl

Step 2.1: convert to signatures
 inv, ivy … ilny, inlvy

The Elixir code in the following listing is just as simple:

function-pipelines/anagrams/lib/anagrams.ex

 defp as_unique_signatures(subsets) do
 subsets
 |> Stream.map(&Dictionary.signature_of/1)
 end

Now we transform that list of signatures: each signature gets
mapped to the list of known words with the same signature, or
nil if there are no such words. We then have to remove the nils

and flatten the nested lists into a single level:

function-pipelines/anagrams/lib/anagrams.ex

 defp find_in_dictionary(signatures) do
 signatures
 |> Stream.map(&Dictionary.lookup_by_signature/1)

 |> Stream.reject(&is_nil/1)
 |> Stream.concat(&(&1))
 end

Step 4, grouping the words by length, is another simple
transformation, converting our list into a map where the keys
are the lengths, and the values are all words with that length:

function-pipelines/anagrams/lib/anagrams.ex

 defp group_by_length(words) do
 words
 |> Enum.sort()
 |> Enum.group_by(&String.length/1)
 end

Language X Doesn't Have Pipelines

Pipelines have been around for a long time, but only in niche languages. They’ve only
moved into the mainstream recently, and many popular languages still don’t support the
concept.

The good news is that thinking in transformations doesn’t require a particular language
syntax: it’s more a philosophy of design. You still construct your code as
transformations, but you write them as a series of assignments:

const content = File.read(file_name);

const lines = find_matching_lines(content, pattern)

const result = truncate_lines(lines)

It’s a little more tedious, but it gets the job done.

Putting It All Together

We’ve written each of the individual transformations. Now it’s
time to string them all together into our main function:

function-pipelines/anagrams/lib/anagrams.ex

 def anagrams_in(word) do

 word
 |> all_subsets_longer_than_three_characters()
 |> as_unique_signatures()
 |> find_in_dictionary()
 |> group_by_length()
 end

Does it work? Let’s try it:

 iex(1)> Anagrams.anagrams_in "lyvin"
 %{
 3 => ["ivy", "lin", "nil", "yin"],
 4 => ["inly", "liny", "viny"],
 5 => ["vinyl"]
 }

WHY IS THIS SO GREAT?

Let’s look at the body of the main function again:

 word
 |> all_subsets_longer_than_three_characters()
 |> as_unique_signatures()
 |> find_in_dictionary()
 |> group_by_length()

It’s simply a chain of the transformations needed to meet our
requirement, each taking input from the previous
transformation and passing output to the next. That comes
about as close to literate code as you can get.

But there’s something deeper, too. If your background is object-
oriented programming, then your reflexes demand that you
hide data, encapsulating it inside objects. These objects then
chatter back and forth, changing each other’s state. This
introduces a lot of coupling, and it is a big reason that OO
systems can be hard to change.

Tip 50 Don’t Hoard State; Pass It Around

In the transformational model, we turn that on its head. Instead
of little pools of data spread all over the system, think of data as
a mighty river, a flow. Data becomes a peer to functionality: a
pipeline is a sequence of code → data → code → data…. The
data is no longer tied to a particular group of functions, as it is
in a class definition. Instead it is free to represent the unfolding
progress of our application as it transforms its inputs into its
outputs. This means that we can greatly reduce coupling: a
function can be used (and reused) anywhere its parameters
match the output of some other function.

Yes, there is still a degree of coupling, but in our experience it’s
more manageable than the OO-style of command and control.
And, if you’re using a language with type checking, you’ll get
compile-time warnings when you try to connect two
incompatible things.

WHAT ABOUT ERROR HANDLING?
So far our transforms have worked in a world where nothing
goes wrong. How can we use them in the real world, though? If
we can only build linear chains, how can we add all that
conditional logic that we need for error checking?

There are many ways of doing this, but they all rely on a basic
convention: we never pass raw values between transformations.
Instead, we wrap them in a data structure (or type) which also
tells us if the contained value is valid. In Haskell, for example,
this wrapper is called Maybe. In F# and Scala it’s Option.

How you use this concept is language specific. In general,
though, there are two basic ways of writing the code: you can

handle checking for errors inside your transformations or
outside them.

Elixir, which we’ve used so far, doesn’t have this support built
in. For our purposes this is a good thing, as we get to show an
implementation from the ground up. Something similar should
work in most other languages.

First, Choose a Representation

We need a representation for our wrapper (the data structure
that carries around a value or an error indication). You can use
structures for this, but Elixir already has a pretty strong
convention: functions tend to return a tuple containing either
{:ok, value} or {:error, reason}. For example, File.open returns either :ok

and an IO process or :error and a reason code:

 iex(1)> File.open("/etc/passwd")
 {:ok, #PID<0.109.0>}
 iex(2)> File.open("/etc/wombat")
 {:error, :enoent}

We’ll use the :ok/:error tuple as our wrapper when passing things
through a pipeline.

Then Handle It Inside Each Transformation

Let’s write a function that returns all the lines in a file that
contain a given string, truncated to the first 20 characters. We
want to write it as a transformation, so the input will be a file
name and a string to match, and the output will be either an :ok

tuple with a list of lines or an :error tuple with some kind of
reason. The top-level function should look something like this:

function-pipelines/anagrams/lib/grep.ex

 def find_all(file_name, pattern) do

 File.read(file_name)
 |> find_matching_lines(pattern)
 |> truncate_lines()
 end

There’s no explicit error checking here, but if any step in the
pipeline returns an error tuple then the pipeline will return that
error without executing the functions that follow. We do this
using Elixir’s pattern matching:

function-pipelines/anagrams/lib/grep.ex

 defp find_matching_lines({:ok, content}, pattern) do
 content
 |> String.split(~r/\n/)
 |> Enum.filter(&String.match?(&1, pattern))
 |> ok_unless_empty()
 end

 defp find_matching_lines(error, _), do: error

 # ----------

 defp truncate_lines({ :ok, lines }) do
 lines
 |> Enum.map(&String.slice(&1, 0, 20))
 |> ok()
 end

 defp truncate_lines(error), do: error

 # ----------

 defp ok_unless_empty([]), do: error("nothing found")
 defp ok_unless_empty(result), do: ok(result)

 defp ok(result), do: { :ok, result }
 defp error(reason), do: { :error, reason }

Have a look at the function find_matching_lines. If its first
parameter is an :ok tuple, it uses the content in that tuple to find

[42]

lines matching the pattern. However, if the first parameter is
not an :ok tuple, the second version of the function runs, which
just returns that parameter. This way the function simply
forwards an error down the pipeline. The same thing applies to
truncate_lines.

We can play with this at the console:

 iex> Grep.find_all "/etc/passwd", ~r/www/
 {:ok, ["_www:*:70:70:World W", "_wwwproxy:*:252:252:"]}

 iex> Grep.find_all "/etc/passwd", ~r/wombat/
 {:error, "nothing found"}
 iex> Grep.find_all "/etc/koala", ~r/www/
 {:error, :enoent}

You can see that an error anywhere in the pipeline immediately
becomes the value of the pipeline.

Or Handle It in the Pipeline

You might be looking at the find_matching_lines and truncate_lines

functions thinking that we’ve moved the burden of error
handling into the transformations. You’d be right. In a language
which uses pattern matching in function calls, such as Elixir, the
effect is lessened, but it’s still ugly.

It would be nice if Elixir had a version of the pipeline operator |>
that knew about the :ok/:error tuples and which short-circuited
execution when an error occurred. But the fact that it doesn’t
allows us to add something similar, and in a way that is
applicable to a number of other languages.

The problem we face is that when an error occurs we don’t want
to run code further down the pipeline, and that we don’t want
that code to know that this is happening. This means that we

[43]

need to defer running pipeline functions until we know that
previous steps in the pipeline were successful. To do this, we’ll
need to change them from function calls into function values
that can be called later. Here’s one implementation:

function-pipelines/anagrams/lib/grep1.ex

 defmodule Grep1 do

 def and_then({ :ok, value }, func), do: func.(value)
 def and_then(anything_else, _func), do: anything_else

 def find_all(file_name, pattern) do
 File.read(file_name)
 |> and_then(&find_matching_lines(&1, pattern))
 |> and_then(&truncate_lines(&1))
 end

 defp find_matching_lines(content, pattern) do
 content
 |> String.split(~r/\n/)
 |> Enum.filter(&String.match?(&1, pattern))
 |> ok_unless_empty()
 end

 defp truncate_lines(lines) do
 lines
 |> Enum.map(&String.slice(&1, 0, 20))
 |> ok()
 end

 defp ok_unless_empty([]), do: error("nothing found")
 defp ok_unless_empty(result), do: ok(result)

 defp ok(result), do: { :ok, result }
 defp error(reason), do: { :error, reason }
 end

The and_then function is an example of a bind function: it takes a
value wrapped in something, then applies a function to that

value, returning a new wrapped value. Using the and_then

function in the pipeline takes a little extra punctuation because
Elixir needs to be told to convert function calls into function
values, but that extra effort is offset by the fact that the
transforming functions become simple: each just takes a value
(and any extra parameters) and returns {:ok, new_value} or {:error,

reason}.

TRANSFORMATIONS TRANSFORM PROGRAMMING

Thinking of code as a series of (nested) transformations can be a
liberating approach to programming. It takes a while to get used
to, but once you’ve developed the habit you’ll find your code
becomes cleaner, your functions shorter, and your designs
flatter.

Give it a try.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 17, Shell Games

Topic 26, How to Balance Resources

Topic 28, Decoupling

Topic 35, Actors and Processes

EXERCISES

Exercise 21 (possible answer)

Can you express the following requirements as a top-level
transformation? That is, for each, identify the input and the
output.

1. Shipping and sales tax are added to an order
2. Your application loads configuration information from a named file
3. Someone logs in to a web application

Exercise 22 (possible answer)

You’ve identified the need to validate and convert an input field
from a string into an integer between 18 and 150. The overall
transformation is described by

 field contents as string
 → [validate & convert]
 → {:ok, value} | {:error, reason}

Write the individual transformations that make up validate &
convert.

Exercise 23 (possible answer)

In Language X Doesn’t Have Pipelines we wrote:

 const content = File.read(file_name);
 const lines = find_matching_lines(content, pattern)
 const result = truncate_lines(lines)

Many people write OO code by chaining together method calls,
and might be tempted to write this as something like:

 const result = content_of(file_name)
 .find_matching_lines(pattern)
 .truncate_lines()

What’s the difference between these two pieces of code? Which
do you think we prefer?

You wanted a banana
but what you got was
a gorilla holding the
banana and the entire
jungle.

Joe Armstrong

Topic 31 Inheritance Tax

Do you program in an object-
oriented language? Do you use
inheritance?

If so, stop! It probably isn’t what
you want to do.

Let’s see why.

SOME BACKGROUND
Inheritance first appeared in Simula 67 in 1969. It was an
elegant solution to the problem of queuing multiple types of
events on the same list. The Simula approach was to use
something called prefix classes. You could write something like
this:

 link CLASS car;
 ... implementation of car

 link CLASS bicycle;
 ... implementation of bicycle

The link is a prefix class that adds the functionality of linked
lists. This lets you add both cars and bicycles to the list of things
waiting at (say) a traffic light. In current terminology, link would
be a parent class.

The mental model used by Simula programmers was that the
instance data and implementation of class link was prepended to
the implementation of classes car and bicycle. The link part was
almost viewed as being a container that carried around cars and
bicycles. This gave them a form of polymorphism: cars and
bicycles both implemented the link interface because they both
contained the link code.

After Simula came Smalltalk. Alan Kay, one of the creators of
Smalltalk, describes in a 2019 Quora answer why Smalltalk
has inheritance:

So when I designed Smalltalk-72—and it was a lark for fun while
thinking about Smalltalk-71—I thought it would be fun to use its
Lisp-like dynamics to do experiments with “differential
programming” (meaning: various ways to accomplish “this is
like that except”).

This is subclassing purely for behavior.

These two styles of inheritance (which actually had a fair
amount in common) developed over the following decades. The
Simula approach, which suggested inheritance was a way of
combining types, continued in languages such as C++ and Java.
The Smalltalk school, where inheritance was a dynamic
organization of behaviors, was seen in languages such as Ruby
and JavaScript.

So, now we’re faced with a generation of OO developers who use
inheritance for one of two reasons: they don’t like typing, or
they like types.

Those who don’t like typing save their fingers by using

[44]

inheritance to add common functionality from a base class into
child classes: class User and class Product are both subclasses of
ActiveRecord::Base.

Those who like types use inheritance to express the relationship
between classes: a Car is-a-kind-of Vehicle.

Unfortunately both kinds of inheritance have problems.

PROBLEMS USING INHERITANCE TO SHARE CODE

Inheritance is coupling. Not only is the child class coupled to
the parent, the parent’s parent, and so on, but the code that uses
the child is also coupled to all the ancestors. Here’s an example:

 class Vehicle
 def initialize
 @speed = 0
 end
 def stop
 @speed = 0
 end
 def move_at(speed)
 @speed = speed
 end
 end

 class Car < Vehicle
 def info
 "I'm car driving at #{@speed}"
 end
 end

 # top-level code
 my_ride = Car.new
 my_ride.move_at(30)

When the top-level calls my_car.move_at, the method being
invoked is in Vehicle, the parent of Car.

Now the developer in charge of Vehicle changes the API, so
move_at becomes set_velocity, and the instance variable @speed

becomes @velocity.

An API change is expected to break clients of Vehicle class. But
the top-level is not: as far as it is concerned it is using a Car.
What the Car class does in terms of implementation is not the
concern of the top-level code, but it still breaks.

Similarly the name of an instance variable is purely an internal
implementation detail, but when Vehicle changes it also (silently)
breaks Car.

So much coupling.

Problems Using Inheritance to Build Types

Some folks view inheritance as a way of
defining new types. Their favorite design
diagram shows class hierarchies. They view
problems the way Victorian gentleman
scientists viewed nature, as something to be
broken down into categories.

Unfortunately, these diagrams soon grow into wall-covering
monstrosities, layer-upon-layer added in order to express the
smallest nuance of differentiation between classes. This added
complexity can make the application more brittle, as changes
can ripple up and down many layers.

Even worse, though, is the multiple inheritance issue. A Car may
be a kind of Vehicle, but it can also be a kind of Asset, InsuredItem,
LoanCollateral and so on. Modeling this correctly would need

multiple inheritance.

C++ gave multiple inheritance a bad name in
the 1990s because of some questionable
disambiguation semantics. As a result, many
current OO languages don’t offer it. So, even
if you’re happy with complex type trees, you
won’t be able to model your domain
accurately anyway.

Tip 51 Don’t Pay Inheritance Tax

THE ALTERNATIVES ARE BETTER

Let us suggest three techniques that mean you should never
need to use inheritance again:

Interfaces and protocols

Delegation

Mixins and traits

Interfaces and Protocols

Most OO languages allow you to specify that a class implements
one or more sets of behaviors. You could say, for example, that a
Car class implements the Drivable behavior and the Locatable

behavior. The syntax used for doing this varies: in Java, it might
look like this:

 public class Car implements Drivable, Locatable {

 // Code for class Car. This code must include
 // the functionality of both Drivable
 // and Locatable

 }

Drivable and Locatable are what Java calls interfaces; other
languages call them protocols, and some call them traits
(although this is not what we’ll be calling a trait later).

Interfaces are defined like this:

 public interface Drivable {
 double getSpeed();
 void stop();
 }

 public interface Locatable() {
 Coordinate getLocation();
 boolean locationIsValid();
 }

These declarations create no code: they simply say that any
class that implements Drivable must implement the two methods
getSpeed and stop, and a class that’s Locatable must implement
getLocation and locationIsValid. This means that our previous class
definition of Car will only be valid if it includes all four of these
methods.

What makes interfaces and protocols so powerful is that we can
use them as types, and any class that implements the
appropriate interface will be compatible with that type. If Car

and Phone both implement Locatable, we could store both in a list
of locatable items:

 List<Locatable> items = new ArrayList<>();

 items.add(new Car(...));
 items.add(new Phone(...));
 items.add(new Car(...));
 // ...

We can then process that list, safe in the knowledge that every
item has getLocation and locationIsValid:

 void printLocation(Locatable item) {
 if (item.locationIsValid() {
 print(item.getLocation().asString());
 }

 // ...

 items.forEach(printLocation);

Tip 52 Prefer Interfaces to Express Polymorphism

Interfaces and protocols give us polymorphism without
inheritance.

Delegation

Inheritance encourages developers to create classes whose
objects have large numbers of methods. If a parent class has 20
methods, and the subclass wants to make use of just two of
them, its objects will still have the other 18 just lying around
and callable. The class has lost control of its interface. This is a

common problem—many persistence and UI frameworks insist
that application components subclass some supplied base class:

 class Account < PersistenceBaseClass
 end

The Account class now carries all of the persistence class’s API
around with it. Instead, imagine an alternative using delegation,
as in the following example:

 class Account
 def initialize(. . .)
 @repo = Persister.for(self)
 end

 def save
 @repo.save()
 end
 end

We now expose none of the framework API to the clients of our
Account class: that decoupling is now broken. But there’s more.
Now that we’re no longer constrained by the API of the
framework we’re using, we’re free to create the API we need.
Yes, we could do that before, but we always ran the risk that the
interface we wrote can be bypassed, and the persistence API
used instead. Now we control everything.

Tip 53 Delegate to Services: Has-A Trumps Is-A

In fact, we can take this a step further. Why should an Account

have to know how to persist itself? Isn’t its job to know and
enforce the account business rules?

 class Account
 # nothing but account stuff

 end

 class AccountRecord
 # wraps an account with the ability
 # to be fetched and stored
 end

Now we’re really decoupled, but it has come at a cost. We’re
having to write more code, and typically some of it will be
boilerplate: it’s likely that all our record classes will need a find

method, for example.

Fortunately, that’s what mixins and traits do for us.

Mixins, Traits, Categories, Protocol Extensions, …

As an industry, we love to give things names. Quite often we’ll
give the same thing many names. More is better, right?

That’s what we’re dealing with when we look at mixins. The
basic idea is simple: we want to be able to extend classes and
objects with new functionality without using inheritance. So we
create a set of these functions, give that set a name, and then
somehow extend a class or object with them. At that point,
you’ve created a new class or object that combines the
capabilities of the original and all its mixins. In most cases,
you’ll be able to make this extension even if you don’t have
access to the source code of the class you’re extending.

Now the implementation and name of this feature varies
between languages. We’ll tend to call them mixins here, but we
really want you to think of this as a language-agnostic feature.
The important thing is the capability that all these
implementations have: merging functionality between existing
things and new things.

As an example, let’s go back to our AccountRecord example. As we
left it, an AccountRecord needed to know about both accounts and
about our persistence framework. It also needed to delegate all
the methods in the persistence layer that it wanted to expose to
the outside world.

Mixins give us an alternative. First, we could write a mixin that
implements (for example) two of three of the standard finder
methods. We could then add them into AccountRecord as a mixin.
And, as we write new classes for persisted things, we can add
the mixin to them, too:

 mixin CommonFinders {
 def find(id) { ... }
 def findAll() { ... }
 end

 class AccountRecord extends BasicRecord with CommonFinders
 class OrderRecord extends BasicRecord with CommonFinders

We can take this a lot further. For example, we all know our
business objects need validation code to prevent bad data from
infiltrating our calculations. But exactly what do we mean by
validation?

If we take an account, for example, there are probably many
different layers of validation that could be applied:

Validating that a hashed password matches one entered by the user

Validating form data entered by the user when an account is
created

Validating form data entered by an admin person updating the user
details

Validating data added to the account by other system components

Validating data for consistency before it is persisted

A common (and we believe less-than-ideal) approach is to
bundle all the validations into a single class (the business
object/persistence object) and then add flags to control which
fire in which circumstances.

We think a better way is to use mixins to create specialized
classes for appropriate situations:

 class AccountForCustomer extends Account
 with AccountValidations,AccountCustomerValidations

 class AccountForAdmin extends Account
 with AccountValidations,AccountAdminValidations

Here, both derived classes include validations common to all
account objects. The customer variant also includes validations
appropriate for the customer-facing APIs, while the admin
variant contained (the presumably less restrictive) admin
validations.

Now, by passing instances of AccountForCustomer or AccountForAdmin

back and forth, our code automatically ensures the correct
validation is applied.

Tip 54 Use Mixins to Share Functionality

INHERITANCE IS RARELY THE ANSWER
We’ve had a quick look at three alternatives to traditional class
inheritance:

Interfaces and protocols

Delegation

Mixins and traits

Each of these methods may be better for you in different
circumstances, depending on whether your goal is sharing type
information, adding functionality, or sharing methods. As with
anything in programming, aim to use the technique that best
expresses your intent.

And try not to drag the whole jungle along for the ride.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 10, Orthogonality

Topic 28, Decoupling

CHALLENGES

The next time you find yourself subclassing, take a minute to
examine the options. Can you achieve what you want with
interfaces, delegation, and/or mixins? Can you reduce coupling by
doing so?

Let all your things
have their places; let
each part of your
business have its time.

Benjamin Franklin, Thirteen
Virtues, autobiography

Topic 32 Configuration

When code relies on values that
may change after the application
has gone live, keep those values
external to the app. When your
application will run in different
environments, and potentially for
different customers, keep the
environment- and customer-
specific values outside the app. In
this way, you’re parameterizing

your application; the code adapts to the places it runs.

Tip 55
Parameterize Your App Using External
Configuration

Common things you will probably want to put in configuration
data include:

Credentials for external services (database, third party APIs, and so
on)

Logging levels and destinations

Port, IP address, machine, and cluster names the app uses

Environment-specific validation parameters

Externally set parameters, such as tax rates

Site-specific formatting details

License keys

Basically, look for anything that you know will have to change
that you can express outside your main body of code, and slap it
into some configuration bucket.

STATIC CONFIGURATION

Many frameworks, and quite a few custom applications, keep
configuration in either flat files or database tables. If the
information is in flat files, the trend is to use some off-the-shelf
plain-text format. Currently YAML and JSON are popular for
this. Sometimes applications written in scripting languages use
special purpose source-code files, dedicated to containing just
configuration. If the information is structured, and is likely to
be changed by the customer (sales tax rates, for example), it
might be better to store it in a database table. And, of course,
you can use both, splitting the configuration information
according to use.

Whatever form you use, the configuration is read into your
application as a data structure, normally when the application
starts. Commonly, this data structure is made global, the
thinking being that this makes it easier for any part of the code
to get to the values it holds.

We prefer that you don’t do that. Instead, wrap the
configuration information behind a (thin) API. This decouples
your code from the details of the representation of
configuration.

CONFIGURATION-AS-A-SERVICE
While static configuration is common, we currently favor a

different approach. We still want configuration data kept
external to the application, but rather than in a flat file or
database, we’d like to see it stored behind a service API. This
has a number of benefits:

Multiple applications can share configuration information, with
authentication and access control limiting what each can see

Configuration changes can be made globally

The configuration data can be maintained via a specialized UI

The configuration data becomes dynamic

That last point, that configuration should be dynamic, is critical
as we move toward highly available applications. The idea that
we should have to stop and restart an application to change a
single parameter is hopelessly out of touch with modern
realities. Using a configuration service, components of the
application could register for notifications of updates to
parameters they use, and the service could send them messages
containing new values if and when they are changed.

Whatever form it takes, configuration data drives the runtime
behavior of an application. When configuration values change,
there’s no need to rebuild the code.

DON’T WRITE DODO-CODE
Without external configuration, your code is not as adaptable or
flexible as it could be. Is this a bad thing? Well, out here in the
real world, species that don’t adapt die.

The dodo didn’t adapt to the presence of humans and their
livestock on the island of Mauritius, and quickly became extinct.

[45]

images/dodo.png

 It was the first documented extinction of a species at the
hand of man.

Don’t let your project (or your career) go the way of the dodo.

RELATED SECTIONS INCLUDE

Topic 9, DRY—The Evils of Duplication

Topic 14, Domain Languages

Topic 16, The Power of Plain Text

Topic 28, Decoupling

Don't Overdo It

In the first edition of this book, we suggested using configuration instead of code in a
similar fashion, but apparently should have been a little more specific in our
instructions. Any advice can be taken to extremes or used inappropriately, so here are
a few cautions:

Don’t overdo it. One early client of ours decided that every single field in their
application should be configurable. As a result, it took weeks to make even the smallest
change, as you had to implement both the field and all the admin code to save and edit
it. They had some 40,000 configuration variables and a coding nightmare on their
hands.

Don’t push decisions to configuration out of laziness. If there’s genuine debate about
whether a feature should work this way or that, or if it should be the users’ choice, try it
out one way and get feedback on whether the decision was a good one.

[45]

Copyright © 2020 Pearson Education, Inc.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Footnotes

So it’s not really a law. It’s more like The Jolly Good Idea of Demeter.

https://media.pragprog.com/articles/jan_03_enbug.pdf

Yes, we know that Ruby already has this capability with its at_exit function.

https://media.pragprog.com/titles/tpp20/code/event/rxcommon/logger.js

It seems that the first use of the characters |> as a pipe dates to 1994, in a discussion
about the language Isobelle/ML, archived at
https://blogs.msdn.microsoft.com/dsyme/2011/05/17/archeological-semiotics-the-
birth-of-the-pipeline-symbol-1994/

We’ve taken a liberty here. Technically we do execute the following functions. We just
don’t execute the code in them.

In fact you could add such an operator to Elixir using its macro facility; an example of
this is the Monad library in hex. You could also use Elixir’s with construct, but then you
lose much of the sense of writing transformations that you get with pipelines.

https://www.quora.com/What-does-Alan-Kay-think-about-inheritance-in-object-
oriented-programming

It didn’t help that the settlers beat the placid (read: stupid) birds to death with clubs for
sport.

Chapter 6

Concurrency

Just so we’re all on the same page, let’s start with some
definitions:

Concurrency is when the execution of two or more pieces of
code act as if they run at the same time. Parallelism is when
they do run at the same time.

To have concurrency, you need to run code in an environment
that can switch execution between different parts of your code
when it is running. This is often implemented using things such
as fibers, threads, and processes.

To have parallelism, you need hardware that can do two things
at once. This might be multiple cores in a CPU, multiple CPUs
in a computer, or multiple computers connected together.

Everything Is Concurrent
It’s almost impossible to write code in a decent-sized system
that doesn’t have concurrent aspects to it. They may be explicit,
or they may be buried inside a library. Concurrency is a
requirement if you want your application to be able to deal with
the real world, where things are asynchronous: users are
interacting, data is being fetched, external services are being
called, all at the same time. If you force this process to be serial,
with one thing happening, then the next, and so on, your system
feels sluggish and you’re probably not taking full advantage of
the power of the hardware on which it runs.

In this chapter we’ll look at concurrency and parallelism.

Developers often talk about coupling between chunks of code.
They’re referring to dependencies, and how those dependencies
make things hard to change. But there’s another form of
coupling. Temporal coupling happens when your code imposes
a sequence on things that is not required to solve the problem at
hand. Do you depend on the “tick” coming before the “tock”?
Not if you want to stay flexible. Does your code access multiple
back-end services sequentially, one after the other? Not if you
want to keep your customers. In Topic 33, Breaking Temporal
Coupling, we’ll look at ways of identifying this kind of temporal
coupling.

Why is writing concurrent and parallel code so difficult? One
reason is that we learned to program using sequential systems,
and our languages have features that are relatively safe when
used sequentially but become a liability once two things can

happen at the same time. One of the biggest culprits here is
shared state. This doesn’t just mean global variables: any time
two or more chunks of code hold references to the same piece of
mutable data, you have shared state. And Topic 34, Shared
State Is Incorrect State. The section describes a number of
workarounds for this, but ultimately they’re all error prone.

If that makes you feed sad, nil desperandum! There are better
ways to construct concurrent applications. One of these is using
the actor model, where independent processes, which share no
data, communicate over channels using defined, simple,
semantics. We talk about both the theory and practice of this
approach in Topic 35, Actors and Processes.

Finally, we’ll look at Topic 36, Blackboards. These are systems
which act like a combination of an object store and a smart
publish/subscribe broker. In their original form, they never
really took off. But today we’re seeing more and more
implementations of middleware layers with blackboard-like
semantics. Used correctly, these types of systems offer a serious
amount of decoupling.

Concurrent and parallel code used to be exotic. Now it is
required.

Topic 33 Breaking Temporal Coupling

“What is temporal coupling all about?”, you may ask. It’s about
time.

Time is an often ignored aspect of software architectures. The
only time that preoccupies us is the time on the schedule, the
time left until we ship—but this is not what we’re talking about
here. Instead, we are talking about the role of time as a design
element of the software itself. There are two aspects of time that
are important to us: concurrency (things happening at the same
time) and ordering (the relative positions of things in time).

We don’t usually approach programming with either of these
aspects in mind. When people first sit down to design an
architecture or write a program, things tend to be linear. That’s
the way most people think—do this and then always do that. But
thinking this way leads to temporal coupling: coupling in time.
Method A must always be called before method B; only one
report can be run at a time; you must wait for the screen to
redraw before the button click is received. Tick must happen
before tock.

This approach is not very flexible, and not very realistic.

We need to allow for concurrency and to think about decoupling
any time or order dependencies. In doing so, we can gain
flexibility and reduce any time-based dependencies in many
areas of development: workflow analysis, architecture, design,

and deployment. The result will be systems that are easier to
reason about, that potentially respond faster and more reliably.

LOOKING FOR CONCURRENCY

On many projects, we need to model and analyze the application
workflows as part of the design. We’d like to find out what can
happen at the same time, and what must happen in a strict
order. One way to do this is to capture the workflow using a
notation such as the activity diagram.

Tip 56 Analyze Workflow to Improve Concurrency

An activity diagram consists of a set of actions drawn as
rounded boxes. The arrow leaving an action leads to either
another action (which can start once the first action completes)
or to a thick line called a synchronization bar. Once all the
actions leading into a synchronization bar are complete, you can
then proceed along any arrows leaving the bar. An action with
no arrows leading into it can be started at any time.

You can use activity diagrams to maximize parallelism by
identifying activities that could be performed in parallel, but
aren’t.

For instance, we may be writing the software for a robotic piña
colada maker. We’re told that the steps are:

1. Open blender

2. Open piña colada mix

1. Close blender

2. Liquefy for 1 minute

[46]

3. Put mix in blender

4. Measure 1/2 cup white rum

5. Pour in rum

6. Add 2 cups of ice

3. Open blender

4. Get glasses

5. Get pink umbrellas

6. Serve

However, a bartender would lose their job if they followed these
steps, one by one, in order. Even though they describe these
actions serially, many of them could be performed in parallel.
We’ll use the following activity diagram to capture and reason
about potential concurrency.

images/pina-colada.png

It can be eye-opening to see where the dependencies really exist.
In this instance, the top-level tasks (1, 2, 4, 10, and 11) can all
happen concurrently, up front. Tasks 3, 5, and 6 can happen in
parallel later. If you were in a piña colada-making contest, these
optimizations may make all the difference.

Faster Formatting

This book is written in plain text. To build the version to be printed, or an ebook, or
whatever, that text is fed through a pipeline of processors. Some look for particular
constructs (bibliography citations, index entries, special markup for tips, and so on).
Other processors operate on the document as a whole.

Many of the processors in the pipeline have to access external information (reading
files, writing files, piping through external programs). All this relatively slow speed work
gives us the opportunity to exploit concurrency: in fact each step in the pipeline
executes concurrently, reading from the previous step and writing to the next.

In addition, some parts of the process are relatively processor intensive. One of these
is the conversion of mathematical formulae. For various historical reasons each
equation can take up to 500ms to convert. To speed things up, we take advantage of
parallelism. Because each formula is independent of the others, we convert each in its
own parallel process and collect the results back into the book as they become
available.

As a result, the book builds much, much faster on multicore machines.

(And, yes, we did indeed discover a number of concurrency errors in our pipeline along
the way….)

OPPORTUNITIES FOR CONCURRENCY
Activity diagrams show the potential areas of concurrency, but
have nothing to say about whether these areas are worth
exploiting. For example, in the piña colada example, a bartender
would need five hands to be able to run all the potential initial
tasks at once.

And that’s where the design part comes in. When we look at the
activities, we realize that number 8, liquify, will take a minute.
During that time, our bartender can get the glasses and
umbrellas (activities 10 and 11) and probably still have time to
serve another customer.

And that’s what we’re looking for when we’re designing for
concurrency. We’re hoping to find activities that take time, but
not time in our code. Querying a database, accessing an external

service, waiting for user input: all these things would normally
stall our program until they complete. And these are all
opportunities to do something more productive than the CPU
equivalent of twiddling one’s thumbs.

OPPORTUNITIES FOR PARALLELISM

Remember the distinction: concurrency is a software
mechanism, and parallelism is a hardware concern. If we have
multiple processors, either locally or remotely, then if we can
split work out among them we can reduce the overall time
things take.

The ideal things to split this way are pieces of work that are
relatively independent—where each can proceed without
waiting for anything from the others. A common pattern is to
take a large piece of work, split it into independent chunks,
process each in parallel, then combine the results.

An interesting example of this in practice is the way the
compiler for the Elixir language works. When it starts, it splits
the project it is building into modules, and compiles each in
parallel. Sometimes a module depends on another, in which
case its compilation pauses until the results of the other
module’s build become available. When the top-level module
completes, it means that all dependencies have been compiled.
The result is a speedy compilation that takes advantage of all
the cores available.

IDENTIFYING OPPORTUNITIES IS THE EASY PART
Back to your applications. We’ve identified places where it will
benefit from concurrency and parallelism. Now for the tricky
part: how can we implement it safely. That’s the topic of the rest

of the chapter.

RELATED SECTIONS INCLUDE

Topic 10, Orthogonality

Topic 26, How to Balance Resources

Topic 28, Decoupling

Topic 36, Blackboards

CHALLENGES

How many tasks do you perform in parallel when you get ready for
work in the morning? Could you express this in a UML activity
diagram? Can you find some way to get ready more quickly by
increasing concurrency?

Topic 34 Shared State Is Incorrect State

You’re in your favorite diner. You finish your main course, and
ask your server if there’s any apple pie left. He looks over his
shoulder, sees one piece in the display case, and says yes. You
order it and sigh contentedly.

Meanwhile, on the other side of the restaurant, another
customer asks their server the same question. She also looks,
confirms there’s a piece, and that customer orders.

One of the customers is going to be disappointed.

Swap the display case for a joint bank account, and turn the
waitstaff into point-of-sale devices. You and your partner both
decide to buy a new phone at the same time, but there’s only
enough in the account for one. Someone—the bank, the store, or
you—is going to be very unhappy.

Tip 57 Shared State Is Incorrect State

The problem is the shared state. Each server in the restaurant
looked into the display case without regard for the other. Each
point-of-sale device looked at an account balance without
regard for the other.

NONATOMIC UPDATES
Let’s look at our diner example as if it were code:

images/pie_case.png

The two waiters operate concurrently (and, in real life, in
parallel). Let’s look at their code:

 if display_case.pie_count > 0
 promise_pie_to_customer()
 display_case.take_pie()
 give_pie_to_customer()
 end

Waiter 1 gets the current pie count, and finds that it is one. He
promises the pie to the customer. But at that point, waiter 2
runs. She also sees the pie count is one and makes the same
promise to her customer. One of the two then grabs the last
piece of pie, and the other waiter enters some kind of error state
(which probably involves much grovelling).

The problem here is not that two processes can write to the
same memory. The problem is that neither process can
guarantee that its view of that memory is consistent. Effectively,
when a waiter executes display_case.pie_count(), they copy the value
from the display case into their own memory. If the value in the
display case changes, their memory (which they are using to
make decisions) is now out of date.

This is all because the fetching and then updating the pie count
is not an atomic operation: the underlying value can change in
the middle.

So how can we make it atomic?

Semaphores and Other Forms of Mutual Exclusion

A semaphore is simply a thing that only one person can own at a
time. You can create a semaphore and then use it to control
access to some other resource. In our example, we could create
a semaphore to control access to the pie case, and adopt the
convention that anyone who wants to update the pie case
contents can only do so if they are holding that semaphore.

Say the diner decides to fix the pie problem with a physical
semaphore. They place a plastic Leprechaun on the pie case.
Before any waiter can sell a pie, they have to be holding the
Leprechaun in their hand. Once their order has been completed
(which means delivering the pie to the table) they can return the
Leprechaun to its place guarding the treasure of the pies, ready
to mediate the next order.

Let’s look at this in code. Classically, the operation to grab the
semaphore was called P, and the operation to release it was
called V. Today we use terms such as lock/unlock,
claim/release, and so on.

 case_semaphore.lock()

 if display_case.pie_count > 0
 promise_pie_to_customer()
 display_case.take_pie()
 give_pie_to_customer()
 end

[47]

 case_semaphore.unlock()

This code assumes that a semaphore has already been created
and stored in the variable case_semaphore.

Let’s assume both waiters execute the code at the same time.
They both try to lock the semaphore, but only one succeeds. The
one that gets the semaphore continues to run as normal. The
one that doesn’t get the semaphore is suspended until the
semaphore becomes available (the waiter waits…). When the
first waiter completes the order they unlock the semaphore and
the second waiter continues running. They now see there’s no
pie in the case, and apologize to the customer.

There are some problems with this approach. Probably the most
significant is that it only works because everyone who accesses
the pie case agrees on the convention of using the semaphore. If
someone forgets (that is, some developer writes code that
doesn’t follow the convention) then we’re back in chaos.

Make the Resource Transactional

The current design is poor because it delegates responsibility for
protecting access to the pie case to the people who use it. Let’s
change it to centralize that control. To do this, we have to
change the API so that waiters can check the count and also take
a slice of pie in a single call:

 slice = display_case.get_pie_if_available()
 if slice
 give_pie_to_customer()
 end

To make this work, we need to write a method that runs as part
of the display case itself:

 def get_pie_if_available() ####
 if @slices.size > 0 #
 update_sales_data(:pie) #
 return @slices.shift #
 else # incorrect code!
 false #
 end #
 end ####

This code illustrates a common misconception. We’ve moved
the resource access into a central place, but our method can still
be called from multiple concurrent threads, so we still need to
protect it with a semaphore:

 def get_pie_if_available()
 @case_semaphore.lock()

 if @slices.size > 0
 update_sales_data(:pie)
 return @slices.shift
 else
 false
 end

 @case_semaphore.unlock()
 end

Even this code might not be correct. If update_sales_data raises an
exception, the semaphore will never get unlocked, and all future
access to the pie case will hang indefinitely. We need to handle
this:

 def get_pie_if_available()
 @case_semaphore.lock()

 try {
 if @slices.size > 0
 update_sales_data(:pie)
 return @slices.shift
 else
 false

 end
 }
 ensure {
 @case_semaphore.unlock()
 }
 end

Because this is such a common mistake, many languages
provide libraries that handle this for you:

 def get_pie_if_available()
 @case_semaphore.protect() {
 if @slices.size > 0
 update_sales_data(:pie)
 return @slices.shift
 else
 false
 end
 }
 end

MULTIPLE RESOURCE TRANSACTIONS

Our diner just installed an ice cream freezer. If a customer
orders pie à la mode, the waiter will need to check that both pie
and ice cream are available.

We could change the waiter code to something like:

 slice = display_case.get_pie_if_available()
 scoop = freezer.get_ice_cream_if_available()

 if slice && scoop
 give_order_to_customer()
 end

This won’t work, though. What happens if we claim a slice of
pie, but when we try to get a scoop of ice cream we find out
there isn’t any? We’re now left holding some pie that we can’t do
anything with (because our customer must have ice cream). And

the fact we’re holding the pie means it isn’t in the case, so it isn’t
available to some other customer who (being a purist) doesn’t
want ice cream with it.

We could fix this by adding a method to the case that lets us
return a slice of pie. We’ll need to add exception handling to
ensure we don’t keep resources if something fails:

 slice = display_case.get_pie_if_available()

 if slice
 try {
 scoop = freezer.get_ice_cream_if_available()
 if scoop
 try {
 give_order_to_customer()
 }
 rescue {
 freezer.give_back(scoop)
 }
 end
 }
 rescue {
 display_case.give_back(slice)
 }
 end

Again, this is less than ideal. The code is now really ugly:
working out what it actually does is difficult: the business logic
is buried in all the housekeeping.

Previously we fixed this by moving the resource handling code
into the resource itself. Here, though, we have two resources.
Should we put the code in the display case or the freezer?

We think the answer is “no” to both options. The pragmatic
approach would be to say that “apple pie à la mode” is its own
resource. We’d move this code into a new module, and then the

client could just say “get me apple pie with ice cream” and it
either succeeds or fails.

Of course, in the real world there are likely to be many
composite dishes like this, and you wouldn’t want to write new
modules for each. Instead, you’d probably want some kind of
menu item which contained references to its components, and
then have a generic get_menu_item method that does the resource
dance with each.

NON-TRANSACTIONAL UPDATES

A lot of attention is given to shared memory as a source of
concurrency problems, but in fact the problems can pop up
anywhere where your application code shares mutable
resources: files, databases, external services, and so on.
Whenever two or more instances of your code can access some
resource at the same time, you’re looking at a potential
problem.

Sometimes, the resource isn’t all that obvious. While writing
this edition of the book we updated the toolchain to do more
work in parallel using threads. This caused the build to fail, but
in bizarre ways and random places. A common thread through
all the errors was that files or directories could not be found,
even though they were really in exactly the right place.

We tracked this down to a couple of places in the code which
temporarily changed the current directory. In the nonparallel
version, the fact that this code restored the directory back was
good enough. But in the parallel version, one thread would
change the directory and then, while in that directory, another
thread would start running. That thread would expect to be in
the original directory, but because the current directory is

shared between threads, that wasn’t the case.

The nature of this problem prompts another tip:

Tip 58 Random Failures Are Often Concurrency Issues

OTHER KINDS OF EXCLUSIVE ACCESS

Most languages have library support for some kind of exclusive
access to shared resources. They may call it mutexes (for mutual
exclusion), monitors, or semaphores. These are all implemented
as libraries.

However, some languages have concurrency support built into
the language itself. Rust, for example, enforces the concept of
data ownership; only one variable or parameter can hold a
reference to any particular piece of mutable data at a time.

You could also argue that functional languages, with their
tendency to make all data immutable, make concurrency
simpler. However, they still face the same challenges, because at
some point they are forced to step into the real, mutable world.

DOCTOR, IT HURTS…

If you take nothing else away from this section, take this:
concurrency in a shared resource environment is difficult, and
managing it yourself is fraught with challenges.

Which is why we’re recommending the punchline to the old
joke:

Doctor, it hurts when I do this.

Then don’t do that.

The next couple of sections suggest alternative ways of getting
the benefits of concurrency without the pain.

RELATED SECTIONS INCLUDE

Topic 10, Orthogonality

Topic 28, Decoupling

Topic 38, Programming by Coincidence

Without writers,
stories would not be
written,
Without actors, stories
could not be brought to
life.

Angie-Marie Delsante

Topic 35 Actors and Processes

Actors and processes offer
interesting ways of implementing
concurrency without the burden of
synchronizing access to shared
memory.

Before we get into them, however,
we need to define what we mean.
And this is going to sound
academic. Never fear, we’ll be
working through it all in a short
while.

An actor is an independent virtual processor with its own local (and
private) state. Each actor has a mailbox. When a message appears
in the mailbox and the actor is idle, it kicks into life and processes
the message. When it finishes processing, it processes another
message in the mailbox, or, if the mailbox is empty, it goes back to
sleep.
When processing a message, an actor can create other actors, send
messages to other actors that it knows about, and create a new state
that will become the current state when the next message is
processed.

A process is typically a more general-purpose virtual processor,
often implemented by the operating system to facilitate
concurrency. Processes can be constrained (by convention) to
behave like actors, and that’s the type of process we mean here.

ACTORS CAN ONLY BE CONCURRENT

There are a few things that you won’t find in the definition of
actors:

There’s no single thing that’s in control. Nothing schedules what
happens next, or orchestrates the transfer of information from the
raw data to the final output.

The only state in the system is held in messages and in the local
state of each actor. Messages cannot be examined except by being
read by their recipient, and local state is inaccessible outside the
actor.

All messages are one way—there’s no concept of replying. If you
want an actor to return a response, you include your own mailbox
address in the message you send it, and it will (eventually) send the
response as just another message to that mailbox.

An actor processes each message to completion, and only processes
one message at a time.

As a result, actors execute concurrently, asynchronously, and
share nothing. If you had enough physical processors, you could
run an actor on each. If you have a single processor, then some
runtime can handle the switching of context between them.
Either way, the code running in the actors is the same.

Tip 59 Use Actors For Concurrency Without Shared State

A SIMPLE ACTOR
Let’s implement our diner using actors. In this case, we’ll have
three (the customer, the waiter, and the pie case).

The overall message flow will look like this:

We (as some kind of external, God-like being) tell the customer that

they are hungry

In response, they’ll ask the waiter for pie

The waiter will ask the pie case to get some pie to the customer

If the pie case has a slice available, it will send it to the customer,
and also notify the waiter to add it to the bill

If there is no pie, the case tells the waiter, and the waiter apologizes
to the customer

We’ve chosen to implement the code in JavaScript using the
Nact library. We’ve added a little wrapper to this that lets us
write actors as simple objects, where the keys are the message
types that it receives and the values are functions to run when
that particular message is received. (Most actor systems have a
similar kind of structure, but the details depend on the host
language.)

Let’s start with the customer. The customer can receive three
messages:

You’re hungry (sent by the external context)

There’s pie on the table (sent by the pie case)

Sorry, there’s no pie (sent by the waiter)

Here’s the code:

concurrency/actors/index.js

 const customerActor = {
 'hungry for pie': (msg, ctx, state) => {
 return dispatch(state.waiter,
 { type: "order", customer: ctx.self, wants: 'pie' })
 },

[48]

 'put on table': (msg, ctx, _state) =>
 console.log(`${ctx.self.name} sees "${msg.food}" appear on the table`),

 'no pie left': (_msg, ctx, _state) =>
 console.log(`${ctx.self.name} sulks…`)
 }

The interesting case is when we receive a ‘‘hungry for pie’”
message, where we then send a message off to the waiter. (We’ll
see how the customer knows about the waiter actor shortly.)

Here’s the waiter’s code:

concurrency/actors/index.js

 const waiterActor = {
 "order": (msg, ctx, state) => {
 if (msg.wants == "pie") {
 dispatch(state.pieCase,
 { type: "get slice", customer: msg.customer, waiter: ctx.self })
 }
 else {
 console.dir(`Don't know how to order ${msg.wants}`);
 }
 },

 "add to order": (msg, ctx) =>
 console.log(`Waiter adds ${msg.food} to ${msg.customer.name}'s order`

),

 "error": (msg, ctx) => {
 dispatch(msg.customer, { type: 'no pie left', msg: msg.msg });
 console.log(`\nThe waiter apologizes to ${msg.customer.name}:

${msg.msg}`)
 }

 };

When it receives the ’order’ message from the customer, it checks
to see if the request is for pie. If so, it sends a request to the pie

case, passing references both to itself and the customer.

The pie case has state: an array of all the slices of pie it holds.
(Again, we see how that gets set up shortly.) When it receives a
’get slice’ message from the waiter, it sees if it has any slices left.
If it does, it passes the slice to the customer, tells the waiter to
update the order, and finally returns an updated state,
containing one less slice. Here’s the code:

concurrency/actors/index.js

 const pieCaseActor = {
 'get slice': (msg, context, state) => {
 if (state.slices.length == 0) {
 dispatch(msg.waiter,
 { type: 'error', msg: "no pie left", customer: msg.customer })
 return state
 }
 else {
 var slice = state.slices.shift() + " pie slice";
 dispatch(msg.customer,
 { type: 'put on table', food: slice });
 dispatch(msg.waiter,
 { type: 'add to order', food: slice, customer: msg.customer });
 return state;
 }
 }
 }

Although you’ll often find that actors are started dynamically by
other actors, in our case we’ll keep it simple and start our actors
manually. We will also pass each some initial state:

The pie case gets the initial list of pie slices it contains

We’ll give the waiter a reference to the pie case

We’ll give the customers a reference to the waiter

concurrency/actors/index.js

 const actorSystem = start();

 let pieCase = start_actor(
 actorSystem,
 'pie-case',
 pieCaseActor,
 { slices: ["apple", "peach", "cherry"] });

 let waiter = start_actor(
 actorSystem,
 'waiter',
 waiterActor,
 { pieCase: pieCase });

 let c1 = start_actor(actorSystem, 'customer1',
 customerActor, { waiter: waiter });
 let c2 = start_actor(actorSystem, 'customer2',
 customerActor, { waiter: waiter });

And finally we kick it off. Our customers are greedy. Customer 1
asks for three slices of pie, and customer 2 asks for two:

concurrency/actors/index.js

 dispatch(c1, { type: 'hungry for pie', waiter: waiter });
 dispatch(c2, { type: 'hungry for pie', waiter: waiter });
 dispatch(c1, { type: 'hungry for pie', waiter: waiter });
 dispatch(c2, { type: 'hungry for pie', waiter: waiter });
 dispatch(c1, { type: 'hungry for pie', waiter: waiter });
 sleep(500)
 .then(() => {
 stop(actorSystem);
 })

When we run it, we can see the actors communicating. The
order you see may well be different:

 $ node index.js
 customer1 sees "apple pie slice" appear on the table
 customer2 sees "peach pie slice" appear on the table

[49]

 Waiter adds apple pie slice to customer1's order
 Waiter adds peach pie slice to customer2's order
 customer1 sees "cherry pie slice" appear on the table
 Waiter adds cherry pie slice to customer1's order

 The waiter apologizes to customer1: no pie left
 customer1 sulks…

 The waiter apologizes to customer2: no pie left
 customer2 sulks…

NO EXPLICIT CONCURRENCY

In the actor model, there’s no need to write any code to handle
concurrency, as there is no shared state. There’s also no need to
code in explicit end-to-end “do this, do that” logic, as the actors
work it out for themselves based on the messages they receive.

There’s also no mention of the underlying architecture. This set
of components work equally well on a single processor, on
multiple cores, or on multiple networked machines.

ERLANG SETS THE STAGE
The Erlang language and runtime are great examples of an actor
implementation (even though the inventors of Erlang hadn’t
read the original Actor’s paper). Erlang calls actors processes,
but they aren’t regular operating system processes. Instead, just
like the actors we’ve been discussing, Erlang processes are
lightweight (you can run millions of them on a single machine),
and they communicate by sending messages. Each is isolated
from the others, so there is no sharing of state.

In addition, the Erlang runtime implements a supervision
system, which manages the lifetimes of processes, potentially
restarting a process or set of processes in case of failure. And
Erlang also offers hot-code loading: you can replace code in a

running system without stopping that system. And the Erlang
system runs some of the world’s most reliable code, often citing
nine nines availability.

But Erlang (and it’s progeny Elixir) aren’t unique—there are
actor implementations for most languages. Consider using them
for your concurrent implementations.

RELATED SECTIONS INCLUDE

Topic 28, Decoupling

Topic 30, Transforming Programming

Topic 36, Blackboards

CHALLENGES

Do you currently have code that uses mutual exclusion to protect
shared data. Why not try a prototype of the same code written using
actors?

The actor code for the diner only supports ordering slices of pie.
Extend it to let customers order pie à la mode, with separate agents
managing the pie slices and the scoops of ice cream. Arrange things
so that it handles the situation where one or the other runs out.

The writing is on the
wall…

Daniel 5 (ref)

Topic 36 Blackboards

Consider how detectives might use
a blackboard to coordinate and
solve a murder investigation. The
chief inspector starts off by setting
up a large blackboard in the
conference room. On it, she writes
a single question:

H. Dumpty (Male, Egg): Accident? Murder?

Did Humpty really fall, or was he pushed? Each detective may
make contributions to this potential murder mystery by adding
facts, statements from witnesses, any forensic evidence that
might arise, and so on. As the data accumulates, a detective
might notice a connection and post that observation or
speculation as well. This process continues, across all shifts,
with many different people and agents, until the case is closed.
A sample blackboard is shown in the figure.

images/blackboard.png

Figure 2. Someone found a connection between
Humpty’s gambling debts and the phone logs.

Perhaps he was getting threatening phone calls.

Some key features of the blackboard approach are:

None of the detectives needs to know of the existence of any other
detective—they watch the board for new information, and add their
findings.

The detectives may be trained in different disciplines, may have
different levels of education and expertise, and may not even work
in the same precinct. They share a desire to solve the case, but

that’s all.

Different detectives may come and go during the course of the
process, and may work different shifts.

There are no restrictions on what may be placed on the blackboard.
It may be pictures, sentences, physical evidence, and so on.

This is a form of laissez faire concurrency. The detectives are
independent processes, agents, actors, and so on. Some store
facts on the blackboard. Others take facts off the board, maybe
combining or processing them, and add more information to the
board. Gradually the board helps them come to a conclusion.

Computer-based blackboard systems were originally used in
artificial intelligence applications where the problems to be
solved were large and complex—speech recognition, knowledge-
based reasoning systems, and so on.

One of the first blackboard systems was David Gelernter’s
Linda. It stored facts as typed tuples. Applications could write
new tuples into Linda, and query for existing tuples using a
form of pattern matching.

Later came distributed blackboard-like systems such as
JavaSpaces and T Spaces. With these systems, you can store
active Java objects—not just data—on the blackboard, and
retrieve them by partial matching of fields (via templates and
wildcards) or by subtypes. For example, suppose you had a type
Author, which is a subtype of Person. You could search a
blackboard containing Person objects by using an Author template
with a lastName value of “Shakespeare.’’ You’d get Bill
Shakespeare the author, but not Fred Shakespeare the gardener.

These systems never really took off, we believe, in part, because
the need for the kind of concurrent cooperative processing
hadn’t yet developed.

A BLACKBOARD IN ACTION

Suppose we are writing a program to accept and process
mortgage or loan applications. The laws that govern this area
are odiously complex, with federal, state, and local governments
all having their say. The lender must prove they have disclosed
certain things, and must ask for certain information—but must
not ask certain other questions, and so on, and so on.

Beyond the miasma of applicable law, we also have the
following problems to contend with:

Responses can arrive in any order. For instance, queries for a credit
check or title search may take a substantial amount of time, while
items such as name and address may be available immediately.

Data gathering may be done by different people, distributed across
different offices, in different time zones.

Some data gathering may be done automatically by other systems.
This data may arrive asynchronously as well.

Nonetheless, certain data may still be dependent on other data. For
instance, you may not be able to start the title search for a car until
you get proof of ownership or insurance.

The arrival of new data may raise new questions and policies.
Suppose the credit check comes back with a less than glowing
report; now you need these five extra forms and perhaps a blood
sample.

You can try to handle every possible combination and
circumstance using a workflow system. Many such systems

exist, but they can be complex and programmer intensive. As
regulations change, the workflow must be reorganized: people
may have to change their procedures and hard-wired code may
have to be rewritten.

A blackboard, in combination with a rules engine that
encapsulates the legal requirements, is an elegant solution to
the difficulties found here. Order of data arrival is irrelevant:
when a fact is posted it can trigger the appropriate rules.
Feedback is easily handled as well: the output of any set of rules
can post to the blackboard and cause the triggering of yet more
applicable rules.

Tip 60 Use Blackboards to Coordinate Workflow

MESSAGING SYSTEMS CAN BE LIKE BLACKBOARDS

As we’re writing this second edition, many applications are
constructed using small, decoupled services, all communicating
via some form of messaging system. These messaging systems
(such as Kafka and NATS) do far more than simply send data
from A to B. In particular, they offer persistence (in the form of
an event log) and the ability to retrieve messages through a
form of pattern matching. This means you can use them both as
a blackboard system and/or as a platform on which you can run
a bunch of actors.

BUT IT’S NOT THAT SIMPLE…
The actor and/or blackboard and/or microservice approach to
architecture removes a whole class of potential concurrency
problems from your applications. But that benefit comes at a
cost. These approaches are harder to reason about, because a lot

of the action is indirect. You’ll find it helps to keep a central
repository of message formats and/or APIs, particularly if the
repository can generate the code and documentation for you.
You’ll also need good tooling to be able to trace messages and
facts as they progress through the system. (A useful technique is
to add a unique trace id when a particular business function is
initiated and then propagate it to all the actors involved. You’ll
then be able to reconstruct what happens from the log files.)

Finally, these kinds of system can be more troublesome to
deploy and manage, as there are more moving parts. To some
extent this is offset by the fact that the system is more granular,
and can be updated by replacing individual actors, and not the
whole system.

RELATED SECTIONS INCLUDE

Topic 28, Decoupling

Topic 29, Juggling the Real World

Topic 33, Breaking Temporal Coupling

Topic 35, Actors and Processes

EXERCISES
Exercise 24 (possible answer)

Would a blackboard-style system be appropriate for the
following applications? Why, or why not?

Image processing. You’d like to have a number of parallel
processes grab chunks of an image, process them, and put the
completed chunk back.

Group calendaring. You’ve got people scattered across the
globe, in different time zones, and speaking different languages,
trying to schedule a meeting.

Network monitoring tool. The system gathers performance
statistics and collects trouble reports, which agents use to look
for trouble in the system.

CHALLENGES

Do you use blackboard systems in the real world—the message
board by the refrigerator, or the big whiteboard at work? What
makes them effective? Are messages ever posted with a consistent
format? Does it matter?

Copyright © 2020 Pearson Education, Inc.

[46]

[47]

[48]

[49]

Footnotes

Although UML has gradually faded, many of its individual diagrams still exist in one
form or another, including the very useful activity diagram. For more information on
all of the UML diagram types, see UML Distilled: A Brief Guide to the Standard Object
Modeling Language [Fow04].

The names P and V come from the initial letters of Dutch words. However there is some
discussion about exactly which words. The inventor of the technique, Edsger Dĳkstra,
has suggested both passering and prolaag for P, and vrijgave and possibly verhogen
for V.

https://github.com/ncthbrt/nact

In order to run this code you’ll also need our wrapper functions, which are not shown
here. You can download them from
https://media.pragprog.com/titles/tpp20/code/concurrency/actors/index.js

Chapter 7

While You Are Coding

Conventional wisdom says that once a project is in the coding
phase, the work is mostly mechanical, transcribing the design
into executable statements. We think that this attitude is the
single biggest reason that software projects fail, and many
systems end up ugly, inefficient, poorly structured,
unmaintainable, or just plain wrong.

Coding is not mechanical. If it were, all the CASE tools that
people pinned their hopes on way back in the early 1980s would
have replaced programmers long ago. There are decisions to be
made every minute—decisions that require careful thought and
judgment if the resulting program is to enjoy a long, accurate,
and productive life.

Not all decisions are even conscious. You can better harness
your instincts and nonconscious thoughts when you Topic 37,
Listen to Your Lizard Brain. We’ll see how to listen more
carefully and look at ways of actively responding to these
sometimes niggling thoughts.

But listening to your instincts doesn’t mean you can just fly on
autopilot. Developers who don’t actively think about their code
are programming by coincidence—the code might work, but

there’s no particular reason why. In Topic 38, Programming by
Coincidence, we advocate a more positive involvement with the
coding process.

While most of the code we write executes quickly, we
occasionally develop algorithms that have the potential to bog
down even the fastest processors. In Topic 39, Algorithm Speed,
we discuss ways to estimate the speed of code, and we give some
tips on how to spot potential problems before they happen.

Pragmatic Programmers think critically about all code,
including our own. We constantly see room for improvement in
our programs and our designs. In Topic 40, Refactoring, we
look at techniques that help us fix up existing code continuously
as we go.

Testing is not about finding bugs, it’s about getting feedback on
your code: aspects of design, the API, coupling, and so on. That
means that the major benefits of testing happen when you think
about and write the tests, not just when you run them. We’ll
explore this idea in Topic 41, Test to Code.

But of course when you test your own code, you might bring
your own biases to the task. In Topic 42, Property-Based
Testing we’ll see how to have the computer do some wide-
ranging testing for you and how to handle the inevitable bugs
that come up.

It’s critical that you write code that is readable and easy to
reason about. It’s a harsh world out there, filled with bad actors
who are actively trying to break into your system and cause
harm. We’ll discuss some very basic techniques and approaches
to help you Topic 43, Stay Safe Out There.

Finally, one of the hardest things in software development is
Topic 44, Naming Things. We have to name a lot of things, and
in many ways the names we choose define the reality we create.
You need to stay aware of any potential semantic drift while you
are coding.

Most of us can drive a car largely on autopilot; we don’t
explicitly command our foot to press a pedal, or our arm to turn
the wheel—we just think “slow down and turn right.” However,
good, safe drivers are constantly reviewing the situation,
checking for potential problems, and putting themselves into
good positions in case the unexpected happens. The same is
true of coding—it may be largely routine, but keeping your wits
about you could well prevent a disaster.

Only human beings
can look directly at
something, have all the
information they need
to make an accurate
prediction, perhaps
even momentarily
make the accurate
prediction, and then
say that it isn’t so.

Gavin de Becker, The Gift of
Fear

Topic 37 Listen to Your Lizard Brain

Gavin de Becker’s life’s work is
helping people to protect
themselves. His book, The Gift of
Fear: And Other Survival Signals
That Protect Us from Violence [de
98], encapsulates his message.
One of the key themes running
through the book is that as
sophisticated humans we have
learned to ignore our more animal
side; our instincts, our lizard
brain. He claims that most people
who are attacked in the street are
aware of feeling uncomfortable or
nervous before the attack. These
people just tell themselves they’re
being silly. Then the figure

emerges from the dark doorway….

Instincts are simply a response to patterns packed into our
nonconscious brain. Some are innate, others are learned
through repetition. As you gain experience as a programmer,
your brain is laying down layers of tacit knowledge: things that
work, things that don’t work, the probable causes of a type of
error, all the things you notice throughout your days. This is the
part of your brain that hits the save file key when you stop to
chat with someone, even when you don’t realize that you’re

doing it.

Whatever their source, instincts share one thing: they have no
words. Instincts make you feel, not think. And so when an
instinct is triggered, you don’t see a flashing lightbulb with a
banner wrapped around it. Instead, you get nervous, or queasy,
or feel like this is just too much work.

The trick is first to notice it is happening, and then to work out
why. Let’s look first at a couple of common situations in which
your inner lizard is trying to tell you something. Then we’ll
discuss how you can let that instinctive brain out of its
protective wrapper.

FEAR OF THE BLANK PAGE

Everyone fears the empty screen, the lonely blinking cursor
surrounded by a whole bunch of nothing. Starting a new project
(or even a new module in an existing project) can be an
unnerving experience. Many of us would prefer to put off
making the initial commitment of starting.

We think that there are two problems that cause this, and that
both have the same solution.

One problem is that your lizard brain is trying to tell you
something; there’s some kind of doubt lurking just below the
surface of perception. And that’s important.

As a developer, you’ve been trying things and seeing which
worked and which didn’t. You’ve been accumulating experience
and wisdom. When you feel a nagging doubt, or experience
some reluctance when faced with a task, it might be that
experience trying to speak to you. Heed it. You may not be able

to put your finger on exactly what’s wrong, but give it time and
your doubts will probably crystallize into something more solid,
something you can address. Let your instincts contribute to
your performance.

The other problem is a little more prosaic: you might simply be
afraid that you’ll make a mistake.

And that’s a reasonable fear. We developers put a lot of
ourselves into our code; we can take errors in that code as
reflections on our competence. Perhaps there’s an element of
imposter syndrome, too; we may think that this project is
beyond us. We can’t see our way through to the end; we’ll get so
far and then be forced to admit that we’re lost.

FIGHTING YOURSELF

Sometimes code just flies from your brain into the editor: ideas
become bits with seemingly no effort.

Other days, coding feels like walking uphill in mud. Taking each
step requires tremendous effort, and every three steps you slide
back two.

But, being a professional, you soldier on, taking step after
muddy step: you have a job to do. Unfortunately, that’s
probably the exact opposite of what you should do.

Your code is trying to tell you something. It’s saying that this is
harder than it should be. Maybe the structure or design is
wrong, maybe you’re solving the wrong problem, or maybe
you’re just creating an ant farm’s worth of bugs. Whatever the
reason, your lizard brain is sensing feedback from the code, and
it’s desperately trying to get you to listen.

HOW TO TALK LIZARD

We talk a lot about listening to your instincts, to your
nonconscious, lizard brain. The techniques are always the same.

Tip 61 Listen to Your Inner Lizard

First, stop what you’re doing. Give yourself a little time and
space to let your brain organize itself. Stop thinking about the
code, and do something that is fairly mindless for a while, away
from a keyboard. Take a walk, have lunch, chat with someone.
Maybe sleep on it. Let the ideas percolate up through the layers
of your brain on their own: you can’t force it. Eventually they
may bubble up to the conscious level, and you have one of those
a ha! moments.

If that’s not working, try externalizing the issue. Make doodles
about the code you’re writing, or explain it to a coworker
(preferably one who isn’t a programmer), or to your rubber
duck. Expose different parts of your brain to the issue, and see if
any of them have a better handle on the thing that’s troubling
you. We’ve lost track of the number of conversations we’ve had
where one of us was explaining a problem to the other and
suddenly went “Oh! Of course!” and broke off to fix it.

But maybe you’ve tried these things, and you’re still stuck. It’s
time for action. We need to tell your brain that what you’re
about to do doesn’t matter. And we do that by prototyping.

IT’S PLAYTIME!
Andy and Dave have both spent hours looking at empty editor
buffers. We’ll type in some code, then look at the ceiling, then
get yet another drink, then type in some more code, then go

read a funny story about a cat with two tails, then type some
more code, then do select-all/delete and start again. And again.
And again.

And over the years we’ve found a brain hack that seems to work.
Tell yourself you need to prototype something. If you’re facing a
blank screen, then look for some aspect of the project that you
want to explore. Maybe you’re using a new framework, and
want to see how it does data binding. Or maybe it’s a new
algorithm, and you want to explore how it works on edge cases.
Or maybe you want to try a couple of different styles of user
interaction.

If you’re working on existing code and it’s pushing back, then
stash it away somewhere and prototype up something similar
instead.

Do the following.

1. Write “I’m prototyping” on a sticky note, and stick it on the side of
your screen.

2. Remind yourself that prototypes are meant to fail. And remind
yourself that prototypes get thrown away, even if they don’t fail.
There is no downside to doing this.

3. In your empty editor buffer, create a comment describing in one
sentence what you want to learn or do.

4. Start coding.

If you start to have doubts, look at the sticky note.

If, in the middle of coding, that nagging doubt suddenly
crystallizes into a solid concern, then address it.

If you get to the end of the experiment and you still feel uneasy,
start again with the walk and the talk and the time off.

But, in our experience, at some point during the first prototype
you will be surprised to find yourself humming along with your
music, enjoying the feeling of creating code. The nervousness
will have evaporated, replaced by a feeling of urgency: let’s get
this done!

At this stage, you know what to do. Delete all the prototype
code, throw away the sticky note, and fill that empty editor
buffer with bright, shiny new code.

NOT JUST YOUR CODE

A large part of our job is dealing with existing code, often
written by other people. Those people will have different
instincts to you, and so the decisions they made will be
different. Not necessarily worse; just different.

You can read their code mechanically, slogging through it
making notes on stuff that seems important. It’s a chore, but it
works.

Or you can try an experiment. When you spot things done in a
way that seems strange, jot it down. Continue doing this, and
look for patterns. If you can see what drove them to write code
that way, you may find that the job of understanding it becomes
a lot easier. You’ll be able consciously to apply the patterns that
they applied tacitly.

And you might just learn something new along the way.

NOT JUST CODE

Learning to listen to your gut when coding is an important skill
to foster. But it applies to the bigger picture are well. Sometimes
a design just feels wrong, or some requirement makes you feel
uneasy. Stop and analyze these feelings. If you’re in a supportive
environment, express them out loud. Explore them. The
chances are that there’s something lurking in that dark
doorway. Listen to your instincts and avoid the problem before
it jumps out at you.

RELATED SECTIONS INCLUDE

Topic 13, Prototypes and Post-it Notes

Topic 22, Engineering Daybooks

Topic 46, Solving Impossible Puzzles

CHALLENGES

Is there something you know you should do, but have put off
because it feels a little scary, or difficult? Apply the techniques in
this section. Time box it to an hour, maybe two, and promise
yourself that when the bell rings you’ll delete what you did. What
did you learn?

Topic 38 Programming by Coincidence

Do you ever watch old black-and-white war movies? The weary
soldier advances cautiously out of the brush. There’s a clearing
ahead: are there any land mines, or is it safe to cross? There
aren’t any indications that it’s a minefield—no signs, barbed
wire, or craters. The soldier pokes the ground ahead of him with
his bayonet and winces, expecting an explosion. There isn’t one.
So he proceeds painstakingly through the field for a while,
prodding and poking as he goes. Eventually, convinced that the
field is safe, he straightens up and marches proudly forward,
only to be blown to pieces.

The soldier’s initial probes for mines revealed nothing, but this
was merely lucky. He was led to a false conclusion—with
disastrous results.

As developers, we also work in minefields. There are hundreds
of traps waiting to catch us each day. Remembering the soldier’s
tale, we should be wary of drawing false conclusions. We should
avoid programming by coincidence—relying on luck and
accidental successes—in favor of programming deliberately.

HOW TO PROGRAM BY COINCIDENCE

Suppose Fred is given a programming assignment. Fred types in
some code, tries it, and it seems to work. Fred types in some
more code, tries it, and it still seems to work. After several
weeks of coding this way, the program suddenly stops working,
and after hours of trying to fix it, he still doesn’t know why. Fred

may well spend a significant amount of time chasing this piece
of code around without ever being able to fix it. No matter what
he does, it just doesn’t ever seem to work right.

Fred doesn’t know why the code is failing because he didn’t
know why it worked in the first place. It seemed to work, given
the limited “testing’’ that Fred did, but that was just a
coincidence. Buoyed by false confidence, Fred charged ahead
into oblivion. Now, most intelligent people may know someone
like Fred, but we know better. We don’t rely on coincidences—
do we?

Sometimes we might. Sometimes it can be pretty easy to
confuse a happy coincidence with a purposeful plan. Let’s look
at a few examples.

Accidents of Implementation

Accidents of implementation are things that happen simply
because that’s the way the code is currently written. You end up
relying on undocumented error or boundary conditions.

Suppose you call a routine with bad data. The routine responds
in a particular way, and you code based on that response. But
the author didn’t intend for the routine to work that way—it was
never even considered. When the routine gets “fixed,’’ your code
may break. In the most extreme case, the routine you called may
not even be designed to do what you want, but it seems to work
okay. Calling things in the wrong order, or in the wrong context,
is a related problem.

Here it looks like Fred is desperately trying to get something out
on the screen using some particular GUI rendering framework:

 paint();
 invalidate();
 validate();
 revalidate();
 repaint();
 paintImmediately();

But these routines were never designed to be called this way;
although they seem to work, that’s really just a coincidence.

To add insult to injury, when the scene finally does get drawn,
Fred won’t try to go back and take out the spurious calls. “It
works now, better leave well enough alone….”

It’s easy to be fooled by this line of thought. Why should you
take the risk of messing with something that’s working? Well,
we can think of several reasons:

It may not really be working—it might just look like it is.

The boundary condition you rely on may be just an accident. In
different circumstances (a different screen resolution, more CPU
cores), it might behave differently.

Undocumented behavior may change with the next release of the
library.

Additional and unnecessary calls make your code slower.

Additional calls increase the risk of introducing new bugs of their
own.

For code you write that others will call, the basic principles of
good modularization and of hiding implementation behind
small, well-documented interfaces can all help. A well-specified
contract (see Topic 23, Design by Contract) can help eliminate
misunderstandings.

For routines you call, rely only on documented behavior. If you
can’t, for whatever reason, then document your assumption
well.

Close Enough Isn’t

We once worked on a large project that reported on data fed
from a very large number of hardware data collection units out
in the field. These units spanned states and time zones, and for
various logistical and historical reasons, each unit was set to
local time. As a result of conflicting time zone interpretations
and inconsistencies in Daylight Savings Time policies, results
were almost always wrong, but only off by one. The developers
on the project had gotten into the habit of just adding one or
subtracting one to get the correct answer, reasoning that it was
only off by one in this one situation. And then the next function
would see the value as off by the one the other way, and change
it back.

But the fact that it was “only” off by one some of the time was a
coincidence, masking a deeper and more fundamental flaw.
Without a proper model of time handling, the entire large code
base had devolved over time to an untenable mass of +1 and -1
statements. Ultimately, none of it was correct and the project
was scrapped.

Phantom Patterns

Human beings are designed to see patterns and causes, even
when it’s just a coincidence. For example, Russian leaders
always alternate between being bald and hairy: a bald (or
obviously balding) state leader of Russia has succeeded a non-
bald (“hairy”) one, and vice versa, for nearly 200 years.

But while you wouldn’t write code that depended on the next

[50]

[51]

Russian leader being bald or hairy, in some domains we think
that way all the time. Gamblers imagine patterns in lottery
numbers, dice games, or roulette, when in fact these are
statistically independent events. In finance, stock and bond
trading are similarly rife with coincidence instead of actual,
discernible patterns.

A log file that shows an intermittent error every 1,000 requests
may be a difficult-to-diagnose race condition, or may be a plain
old bug. Tests that seem to pass on your machine but not on the
server might indicate a difference between the two
environments, or maybe it’s just a coincidence.

Don’t assume it, prove it.

Accidents of Context

You can have “accidents of context” as well. Suppose you are
writing a utility module. Just because you are currently coding
for a GUI environment, does the module have to rely on a GUI
being present? Are you relying on English-speaking users?
Literate users? What else are you relying on that isn’t
guaranteed?

Are you relying on the current directory being writable? On
certain environment variables or configuration files being
present? On the time on the server being accurate—within what
tolerance? Are you relying on network availability and speed?

When you copied code from the first answer you found on the
net, are you sure your context is the same? Or are you building
“cargo cult” code, merely imitating form without content?

Finding an answer that happens to fit is not the same as the

[52]

right answer.

Tip 62 Don’t Program by Coincidence

Implicit Assumptions

Coincidences can mislead at all levels—from generating
requirements through to testing. Testing is particularly fraught
with false causalities and coincidental outcomes. It’s easy to
assume that X causes Y, but as we said in Topic 20, Debugging:
don’t assume it, prove it.

At all levels, people operate with many assumptions in mind—
but these assumptions are rarely documented and are often in
conflict between different developers. Assumptions that aren’t
based on well-established facts are the bane of all projects.

HOW TO PROGRAM DELIBERATELY

We want to spend less time churning out code, catch and fix
errors as early in the development cycle as possible, and create
fewer errors to begin with. It helps if we can program
deliberately:

Always be aware of what you are doing. Fred let things get slowly
out of hand, until he ended up boiled, like the frog here.

Can you explain the code, in detail, to a more junior programmer?
If not, perhaps you are relying on coincidences.

Don’t code in the dark. Build an application you don’t fully grasp, or
use a technology you don’t understand, and you’ll likely be bitten by
coincidences. If you’re not sure why it works, you won’t know why it
fails.

Proceed from a plan, whether that plan is in your head, on the back
of a cocktail napkin, or on a whiteboard.

Rely only on reliable things. Don’t depend on assumptions. If you
can’t tell if something is reliable, assume the worst.

Document your assumptions. Topic 23, Design by Contract, can
help clarify your assumptions in your own mind, as well as help
communicate them to others.

Don’t just test your code, but test your assumptions as well. Don’t
guess; actually try it. Write an assertion to test your assumptions
(see Topic 25, Assertive Programming). If your assertion is right,
you have improved the documentation in your code. If you discover
your assumption is wrong, then count yourself lucky.

Prioritize your effort. Spend time on the important aspects; more
than likely, these are the hard parts. If you don’t have fundamentals
or infrastructure correct, brilliant bells and whistles will be
irrelevant.

Don’t be a slave to history. Don’t let existing code dictate future
code. All code can be replaced if it is no longer appropriate. Even
within one program, don’t let what you’ve already done constrain
what you do next—be ready to refactor (see Topic 40, Refactoring).
This decision may impact the project schedule. The assumption is
that the impact will be less than the cost of not making the change.

So next time something seems to work, but you don’t know why,
make sure it isn’t just a coincidence.

RELATED SECTIONS INCLUDE

Topic 4, Stone Soup and Boiled Frogs

Topic 9, DRY—The Evils of Duplication

Topic 23, Design by Contract

Topic 34, Shared State Is Incorrect State

Topic 43, Stay Safe Out There

[53]

EXERCISES

Exercise 25 (possible answer)

A data feed from a vendor gives you an array of tuples
representing key-value pairs. The key of DepositAccount will hold a
string of the account number in the corresponding value:

 [
 ...
 {:DepositAccount, "564-904-143-00"}
 ...
]

It worked perfectly in test on the 4-core developer laptops and
on the 12-core build machine, but on the production servers
running in containers, you keep getting the wrong account
numbers. What’s going on?

Exercise 26 (possible answer)

You’re coding an autodialer for voice alerts, and have to manage
a database of contact information. The ITU specifies that phone
numbers should be no longer than 15 digits, so you store the
contact’s phone number in a numeric field guaranteed to hold at
least 15 digits. You’ve tested in thoroughly throughout North
America and everything seems fine, but suddenly you’re getting
a rash of complaints from other parts of the world. Why?

Exercise 27 (possible answer)

You have written an app that scales up common recipes for a
cruise ship dining room that seats 5,000. But you’re getting
complaints that the conversions aren’t precise. You check, and
the code uses the conversion formula of 16 cups to a gallon.

That’s right, isn’t it?

Topic 39 Algorithm Speed

In Topic 15, Estimating, we talked about estimating things such
as how long it takes to walk across town, or how long a project
will take to finish. However, there is another kind of estimating
that Pragmatic Programmers use almost daily: estimating the
resources that algorithms use—time, processor, memory, and so
on.

This kind of estimating is often crucial. Given a choice between
two ways of doing something, which do you pick? You know
how long your program runs with 1,000 records, but how will it
scale to 1,000,000? What parts of the code need optimizing?

It turns out that these questions can often be answered using
common sense, some analysis, and a way of writing
approximations called the Big-O notation.

WHAT DO WE MEAN BY ESTIMATING ALGORITHMS?

Most nontrivial algorithms handle some kind of variable input—
sorting strings, inverting an matrix, or decrypting a
message with an -bit key. Normally, the size of this input will
affect the algorithm: the larger the input, the longer the running
time or the more memory used.

If the relationship were always linear (so that the time increased
in direct proportion to the value of), this section wouldn’t be
important. However, most significant algorithms are not linear.
The good news is that many are sublinear. A binary search, for

example, doesn’t need to look at every candidate when finding a
match. The bad news is that other algorithms are considerably
worse than linear; runtimes or memory requirements increase
far faster than . An algorithm that takes a minute to process
ten items may take a lifetime to process 100.

We find that whenever we write anything containing loops or
recursive calls, we subconsciously check the runtime and
memory requirements. This is rarely a formal process, but
rather a quick confirmation that what we’re doing is sensible in
the circumstances. However, we sometimes do find ourselves
performing a more detailed analysis. That’s when Big-O
notation comes in handy.

BIG-O NOTATION

The Big-O notation, written , is a mathematical way of
dealing with approximations. When we write that a particular
sort routine sorts records in time, we are simply saying
that the worst-case time taken will vary as the square of .
Double the number of records, and the time will increase
roughly fourfold. Think of the as meaning on the order of.

The notation puts an upper bound on the value of the thing
we’re measuring (time, memory, and so on). If we say a function
takes time, then we know that the upper bound of the time it
takes will not grow faster than . Sometimes we come up with
fairly complex functions, but because the highest-order term
will dominate the value as increases, the convention is to
remove all low-order terms, and not to bother showing any
constant multiplying factors:

This is actually a feature of the notation—one algorithm
may be 1,000 times faster than another algorithm, but you
won’t know it from the notation. Big-O is never going to give
you actual numbers for time or memory or whatever: it simply
tells you how these values will change as the input changes.

Figure 3, Runtimes of various algorithms shows several
common notations you’ll come across, along with a graph
comparing running times of algorithms in each category.
Clearly, things quickly start getting out of hand once we get over

.

For example, suppose you’ve got a routine that takes one second
to process 100 records. How long will it take to process 1,000?
If your code is , then it will still take one second. If it’s ,
then you’ll probably be waiting about three seconds. will
show a linear increase to ten seconds, while an will take
some 33 seconds. If you’re unlucky enough to have an
routine, then sit back for 100 seconds while it does its stuff. And
if you’re using an exponential algorithm , you might want to
make a cup of coffee—your routine should finish in about
years. Let us know how the universe ends.

The notation doesn’t apply just to time; you can use it to
represent any other resources used by an algorithm. For
example, it is often useful to be able to model memory
consumption (see the exercises for an example).

Constant (access element in array, simple statements)

 Logarithmic (binary search). The base of the logarithm doesn’t

matter, so this is equivalent .

Linear (sequential search)

Worse than linear, but not much worse. (Average runtime of
quicksort, heapsort)

Square law (selection and insertion sorts)

 Cubic (multiplication of two matrices)

 Exponential (traveling salesman problem, set partitioning)

images/big-o.png

Figure 3. Runtimes of various algorithms

COMMON SENSE ESTIMATION

You can estimate the order of many basic algorithms using
common sense.

Simple loops

If a simple loop runs from to , then the algorithm is
likely to be —time increases linearly with .
Examples include exhaustive searches, finding the
maximum value in an array, and generating checksums.

Nested loops
If you nest a loop inside another, then your algorithm
becomes , where and are the two loops’ limits.
This commonly occurs in simple sorting algorithms, such
as bubble sort, where the outer loop scans each element
in the array in turn, and the inner loop works out where
to place that element in the sorted result. Such sorting
algorithms tend to be .

Binary chop
If your algorithm halves the set of things it considers each
time around the loop, then it is likely to be logarithmic,

. A binary search of a sorted list, traversing a binary
tree, and finding the first set bit in a machine word can
all be .

Divide and conquer
Algorithms that partition their input work on the two
halves independently, and then combine the result can be

. The classic example is quicksort, which works by
partitioning the data into two halves and recursively
sorting each. Although technically , because its
behavior degrades when it is fed sorted input, the average

runtime of quicksort is .

Combinatoric
Whenever algorithms start looking at the permutations of
things, their running times may get out of hand. This is
because permutations involve factorials (there are
permutations of the digits from 1 to 5). Time a
combinatoric algorithm for five elements: it will take six
times longer to run it for six, and 42 times longer for
seven. Examples include algorithms for many of the
acknowledged hard problems—the traveling salesman
problem, optimally packing things into a container,
partitioning a set of numbers so that each set has the
same total, and so on. Often, heuristics are used to reduce
the running times of these types of algorithms in
particular problem domains.

ALGORITHM SPEED IN PRACTICE

It’s unlikely that you’ll spend much time during your career
writing sort routines. The ones in the libraries available to you
will probably outperform anything you may write without
substantial effort. However, the basic kinds of algorithms we’ve
described earlier pop up time and time again. Whenever you
find yourself writing a simple loop, you know that you have an

 algorithm. If that loop contains an inner loop, then you’re
looking at . You should be asking yourself how large these
values can get. If the numbers are bounded, then you’ll know
how long the code will take to run. If the numbers depend on
external factors (such as the number of records in an overnight
batch run, or the number of names in a list of people), then you
might want to stop and consider the effect that large values may
have on your running time or memory consumption.

Tip 63 Estimate the Order of Your Algorithms

There are some approaches you can take to address potential
problems. If you have an algorithm that is , try to find a
divide-and-conquer approach that will take you down to .

If you’re not sure how long your code will take, or how much
memory it will use, try running it, varying the input record
count or whatever is likely to impact the runtime. Then plot the
results. You should soon get a good idea of the shape of the
curve. Is it curving upward, a straight line, or flattening off as
the input size increases? Three or four points should give you an
idea.

Also consider just what you’re doing in the code itself. A simple
 loop may well perform better than a complex, one for

smaller values of , particularly if the algorithm has an
expensive inner loop.

In the middle of all this theory, don’t forget that there are
practical considerations as well. Runtime may look like it
increases linearly for small input sets. But feed the code millions
of records and suddenly the time degrades as the system starts
to thrash. If you test a sort routine with random input keys, you
may be surprised the first time it encounters ordered input. Try
to cover both the theoretical and practical bases. After all this
estimating, the only timing that counts is the speed of your
code, running in the production environment, with real data.
This leads to our next tip.

Tip 64 Test Your Estimates

If it’s tricky getting accurate timings, use code profilers to count
the number of times the different steps in your algorithm get
executed, and plot these figures against the size of the input.

Best Isn’t Always Best

You also need to be pragmatic about choosing appropriate
algorithms—the fastest one is not always the best for the job.
Given a small input set, a straightforward insertion sort will
perform just as well as a quicksort, and will take you less time to
write and debug. You also need to be careful if the algorithm
you choose has a high setup cost. For small input sets, this setup
may dwarf the running time and make the algorithm
inappropriate.

Also be wary of premature optimization. It’s always a good idea
to make sure an algorithm really is a bottleneck before investing
your precious time trying to improve it.

RELATED SECTIONS INCLUDE

Topic 15, Estimating

CHALLENGES

Every developer should have a feel for how algorithms are designed
and analyzed. Robert Sedgewick has written a series of accessible
books on the subject (Algorithms [SW11]An Introduction to the
Analysis of Algorithms [SF13] and others). We recommend adding
one of his books to your collection, and making a point of reading it.

For those who like more detail than Sedgewick provides, read
Donald Knuth’s definitive Art of Computer Programming books,
which analyze a wide range of algorithms.

The Art of Computer Programming, Volume 1:

Fundamental Algorithms [Knu98]

The Art of Computer Programming, Volume 2:
Seminumerical Algorithms [Knu98a]

The Art of Computer Programming, Volume 3: Sorting
and Searching [Knu98b]

The Art of Computer Programming, Volume 4A:
Combinatorial Algorithms, Part 1 [Knu11].

In the first exercise that follows we look at sorting arrays of long
integers. What is the impact if the keys are more complex, and the
overhead of key comparison is high? Does the key structure affect
the efficiency of the sort algorithms, or is the fastest sort always
fastest?

EXERCISES

Exercise 28 (possible answer)

We coded a set of simple sort routines in Rust. Run them on
various machines available to you. Do your figures follow the
expected curves? What can you deduce about the relative speeds
of your machines? What are the effects of various compiler
optimization settings?

Exercise 29 (possible answer)

In Common Sense Estimation, we claimed that a binary chop is
. Can you prove this?

Exercise 30 (possible answer)

In Figure 3, Runtimes of various algorithms, we claimed that
 is the same as (or indeed logarithms to any base). Can

[54]

you explain why?

Change and decay in
all around I see...

H. F. Lyte, Abide With Me

Topic 40 Refactoring

As a program evolves, it will
become necessary to rethink
earlier decisions and rework
portions of the code. This process
is perfectly natural. Code needs to
evolve; it’s not a static thing.

Unfortunately, the most common
metaphor for software development is building construction.
Bertrand Meyer’s classic work Object-Oriented Software
Construction [Mey97] uses the term “Software Construction,”
and even your humble authors edited the Software
Construction column for IEEE Software in the early 2000s.

But using construction as the guiding metaphor implies the
following steps:

1. An architect draws up blueprints.
2. Contractors dig the foundation, build the superstructure, wire and

plumb, and apply finishing touches.
3. The tenants move in and live happily ever after, calling building

maintenance to fix any problems.

Well, software doesn’t quite work that way. Rather than
construction, software is more like gardening—it is more
organic than concrete. You plant many things in a garden
according to an initial plan and conditions. Some thrive, others
are destined to end up as compost. You may move plantings

[55]

relative to each other to take advantage of the interplay of light
and shadow, wind and rain. Overgrown plants get split or
pruned, and colors that clash may get moved to more
aesthetically pleasing locations. You pull weeds, and you
fertilize plantings that are in need of some extra help. You
constantly monitor the health of the garden, and make
adjustments (to the soil, the plants, the layout) as needed.

Business people are comfortable with the metaphor of building
construction: it is more scientific than gardening, it’s
repeatable, there’s a rigid reporting hierarchy for management,
and so on. But we’re not building skyscrapers—we aren’t as
constrained by the boundaries of physics and the real world.

The gardening metaphor is much closer to the realities of
software development. Perhaps a certain routine has grown too
large, or is trying to accomplish too much—it needs to be split
into two. Things that don’t work out as planned need to be
weeded or pruned.

Rewriting, reworking, and re-architecting code is collectively
known as restructuring. But there’s a subset of that activity that
has become practiced as refactoring.

Refactoring [Fow19] is defined by Martin Fowler as a:

disciplined technique for restructuring an existing body of code,
altering its internal structure without changing its external
behavior.

The critical parts of this definition are that:

1. The activity is disciplined, not a free-for-all

2. External behavior does not change; this is not the time to add
features

Refactoring is not intended to be a special, high-ceremony,
once-in-a-while activity, like plowing under the whole garden in
order to replant. Instead, refactoring is a day-to-day activity,
taking low-risk small steps, more like weeding and raking.
Instead of a free-for-all, wholesale rewrite of the codebase, it’s a
targeted, precision approach to help keep the code easy to
change.

In order to guarantee that the external behavior hasn’t changed,
you need good, automated unit testing that validates the
behavior of the code.

WHEN SHOULD YOU REFACTOR?

You refactor when you’ve learned something; when you
understand something better than you did last year, yesterday,
or even just ten minutes ago.

Perhaps you’ve come across a stumbling block because the code
doesn’t quite fit anymore, or you notice two things that should
really be merged, or anything else at all strikes you as being
“wrong,” don’t hesitate to change it. There’s no time like the
present. Any number of things may cause code to qualify for
refactoring:

Duplication
You’ve discovered a violation of the DRY principle.

Nonorthogonal design
You’ve discovered something that could be made more
orthogonal.

Outdated knowledge
Things change, requirements drift, and your knowledge
of the problem increases. Code needs to keep up.

Usage
As the system gets used by real people under real
circumstances, you realize some features are now more
important than previously thought, and “must have”
features perhaps weren’t.

Performance
You need to move functionality from one area of the
system to another to improve performance.

The Tests Pass
Yes. Seriously. We did say that refactoring should be a
small scale activity, backed up by good tests. So when
you’ve added a small amount of code, and that one extra
test passes, you now have a great opportunity to dive in
and tidy up what you just wrote.

Refactoring your code—moving functionality around and
updating earlier decisions—is really an exercise in pain
management. Let’s face it, changing source code around can be
pretty painful: it was working, maybe it’s better to leave well
enough alone. Many developers are reluctant to go in and re-
open a piece of code just because it isn’t quite right.

Real-World Complications

So you go to your teammates or client and say, “This code
works, but I need another week to completely refactor it.”

We can’t print their reply.

Time pressure is often used as an excuse for not refactoring. But
this excuse just doesn’t hold up: fail to refactor now, and there’ll
be a far greater time investment to fix the problem down the
road—when there are more dependencies to reckon with. Will
there be more time available then? Nope.

You might want to explain this principle to others by using a
medical analogy: think of the code that needs refactoring as “a
growth.” Removing it requires invasive surgery. You can go in
now, and take it out while it is still small. Or, you could wait
while it grows and spreads—but removing it then will be both
more expensive and more dangerous. Wait even longer, and you
may lose the patient entirely.

Tip 65 Refactor Early, Refactor Often

Collateral damage in code can be just as deadly over time (see
Topic 3, Software Entropy). Refactoring, as with most things, is
easier to do while the issues are small, as an ongoing activity
while coding. You shouldn’t need “a week to refactor” a piece of
code—that’s a full-on rewrite. If that level of disruption is
necessary, then you might well not be able to do it immediately.
Instead, make sure that it gets placed on the schedule. Make
sure that users of the affected code know that it is scheduled to
be rewritten and how this might affect them.

HOW DO YOU REFACTOR?

Refactoring started out in the Smalltalk community, and had
just started to gain a wider audience when we wrote the first
edition of this book, probably thanks to the first major book on
refactoring (Refactoring: Improving the Design of Existing
Code [Fow19], now in its second edition).

At its heart, refactoring is redesign. Anything that you or others
on your team designed can be redesigned in light of new facts,
deeper understandings, changing requirements, and so on. But
if you proceed to rip up vast quantities of code with wild
abandon, you may find yourself in a worse position than when
you started.

Clearly, refactoring is an activity that needs to be undertaken
slowly, deliberately, and carefully. Martin Fowler offers the
following simple tips on how to refactor without doing more
harm than good:

1. Don’t try to refactor and add functionality at the same time.
2. Make sure you have good tests before you begin refactoring. Run

the tests as often as possible. That way you will know quickly if your
changes have broken anything.

3. Take short, deliberate steps: move a field from one class to another,
split a method, rename a variable. Refactoring often involves
making many localized changes that result in a larger-scale change.
If you keep your steps small, and test after each step, you will avoid
prolonged debugging.

Automatic Refactoring

Back in the first edition we noted that, “this technology has yet to appear outside of the
Smalltalk world, but this is likely to change….” And indeed, it did, as automatic
refactoring is available in many IDEs and for most mainstream languages.

These IDEs can rename variables and methods, split a long routine into smaller ones,
automatically propagating the required changes, drag and drop to assist you in moving
code, and so on.

We’ll talk more about testing at this level in Topic 41, Test to
Code, and larger-scale testing in Ruthless and Continuous
Testing, but Mr. Fowler’s point of maintaining good regression

[56]

[57]

tests is the key to refactoring safely.

If you have to go beyond refactoring and end up changing
external behavior or interfaces, then it can help to deliberately
break the build: old clients of this code should fail to compile.
That way you’ll know what needs updating. Next time you see a
piece of code that isn’t quite as it should be, fix it. Manage the
pain: if it hurts now, but is going to hurt even more later, you
might as well get it over with. Remember the lessons of Topic 3,
Software Entropy: don’t live with broken windows.

RELATED SECTIONS INCLUDE

Topic 3, Software Entropy

Topic 9, DRY—The Evils of Duplication

Topic 12, Tracer Bullets

Topic 27, Don’t Outrun Your Headlights

Topic 44, Naming Things

Topic 48, The Essence of Agility

Topic 41 Test to Code

The first edition of this book was written in more primitive
times, when most developers wrote no tests—why bother, they
thought, the world was going to end in the year 2000 anyway.

In that book, we had a section on how to build code that was
easy to test. It was a sneaky way of convincing developers to
actually write tests.

These are more enlightened times. If there are any developers
still not writing tests, they at least know that they should be.

But there’s still a problem. When we ask developers why they
write tests, they look at us as if we just asked if they still coded
using punched cards and they’d say “to make sure the code
works,” with an unspoken “you dummy” at the end. And we
think that’s wrong.

So what do we think is important about testing? And how do we
think you should go about it?

Let’s start with the bold statement:

Tip 66 Testing Is Not About Finding Bugs

We believe that the major benefits of testing happen when you
think about and write the tests, not when you run them.

THINKING ABOUT TESTS

It’s a Monday morning and you settle in to start work on some
new code. You have to write something that queries the
database to return a list of people who watch more than 10
videos a week on your “world’s funniest dishwashing videos”
site.

You fire up your editor, and start by writing the function that
performs the query:

 def return_avid_viewers do
 # ... hmmm ...
 end

Stop! How do you know that what you’re about to do is a good
thing?

The answer is that you can’t know that. No one can. But
thinking about tests can make it more likely. Here’s how that
works.

Start by imagining that you’d finished writing the function and
now had to test it. How would you do that? Well, you’d want to
use some test data, which probably means you want to work in a
database you control. Now some frameworks can handle that
for you, running tests against a test database, but in our case
that means we should be passing the database instance into our
function rather than using some global one, as that allows us to
change it while testing:

 def return_avid_users(db) do

Then we have to think about how we’d populate that test data.
The requirement asks for a “list of people who watch more than
10 videos a week.” So we look at the database schema for fields

that might help. We find two likely fields in a table of who-
watched-what: opened_video and completed_video. To write our test
data, we need to know which field to use. But we don’t know
what the requirement means, and our business contact is out.
Let’s just cheat and pass in the name of the field (which will
allow us to test what we have, and potentially change it later):

 def return_avid_users(db, qualifying_field_name) do

We started by thinking about our tests, and without writing a
line of code, we’ve already made two discoveries and used them
to change the API of our method.

TESTS DRIVE CODING
In the previous example, thinking about testing made us reduce
coupling in our code (by passing in a database connection
rather than using a global one) and increase flexibility (by
making the name of the field we test a parameter). Thinking
about writing a test for our method made us look at it from the
outside, as if we were a client of the code, and not its author.

Tip 67 A Test Is the First User of Your Code

We think this is probably the biggest benefit offered by testing:
testing is vital feedback that guides your coding.

A function or method that is tightly coupled to other code is
hard to test, because you have to set up all that environment
before you can even run your method. So making your stuff
testable also reduces its coupling.

And before you can test something, you have to understand it.
That sounds silly, but in reality we’ve all launched into a piece of

code based on a nebulous understanding of what we had to do.
We assure ourselves that we’ll work it out as we go along. Oh,
and we’ll add all the code to support the boundary conditions
later, too. Oh, and the error handling. And the code ends up five
times longer than it should because it’s full of conditional logic
and special cases. But shine the light of a test on that code, and
things become clearer. If you think about testing boundary
conditions and how that will work before you start coding, you
may well find the patterns in the logic that’ll simplify the
function. If you think about the error conditions you’ll need to
test, you’ll structure your function accordingly.

Test-Driven Development

There’s a school of programming that says that, given all the
benefits of thinking about tests up front, why not go ahead and
write them up front too? They practice something called test-
driven development or TDD. You’ll also see this called test-first
development.

The basic cycle of TDD is:

1. Decide on a small piece of functionality you want to add.
2. Write a test that will pass once that functionality is implemented.
3. Run all tests. Verify that the only failure is the one you just wrote.
4. Write the smallest amount of code needed to get the test to pass,

and verify that the tests now run cleanly.
5. Refactor your code: see if there is a way to improve on what you just

wrote (the test or the function). Make sure the tests still pass when
you’re done.

The idea is that this cycle should be very short: a matter of
minutes, so that you’re constantly writing tests and then getting
them to work.

[58]

We see a major benefit in TDD for people just starting out with
testing. If you follow the TDD workflow, you’ll guarantee that
you always have tests for your code. And that means you’ll
always be thinking about your tests.

However, we’ve also seen people become slaves to TDD. This
manifests itself in a number of ways:

They spend inordinate amounts of time ensuring that they always
have 100% test coverage.

They have lots of redundant tests. For example, before writing a
class for the first time, many TDD adherents will first write a failing
test that simply references the class’s name. It fails, then they write
an empty class definition and it passes. But now you have a test that
does absolutely nothing; the next test you write will also reference
the class, and so it makes the first unnecessary. There’s more stuff
to change if the class name changes later. And this is just a trivial
example.

Their designs tend to start at the bottom and work their way up.
(See Bottom-Up vs. Top-Down vs. The Way You Should Do It.)

Bottom-Up vs. Top-Down vs. The Way You Should Do It

Back when computing was young and carefree, there were two schools of design: top-
down and bottom-up. The top-down folks said you should start with the overall problem
you’re trying to solve and break it into a small number of pieces. Then break each of
these into smaller pieces, and so on, until you end up with pieces small enough to
express in code.

The bottom-up folks build code like you’d build a house. They start at the bottom,
producing a layer of code that gives them some abstractions that are closer to the
problem they are trying to solve. Then they add another layer, with higher-level
abstractions. They keep on until the final layer is an abstraction that solves the
problem. “Make it so….”

Neither school actually works, because both ignore one of the most important aspects
of software development: we don’t know what we’re doing when we start. The top-down
folks assume they can express the whole requirement up front: they can’t. The bottom-
up folks assume they can build a list of abstractions which will take them eventually to a

single top-level solution, but how can they decide on the functionality of layers when
they don’t know where they are heading?

Tip 68 Build End-to-End, Not Top-Down or Bottom Up

We strongly believe that the only way to build software is incrementally. Build small
pieces of end-to-end functionality, learning about the problem as you go. Apply this
learning as you continue to flesh out the code, involve the customer at each step, and
have them guide the process.

By all means practice TDD. But, if you do, don’t forget to stop
every now and then and look at the big picture. It is easy to
become seduced by the green "tests passed" message, writing lots
of code that doesn’t actually get you closer to a solution.

TDD: YOU NEED TO KNOW WHERE YOU’RE GOING
The old joke asks “How do you eat an elephant?” The punchline:
“One bite at a time.” And this idea is often touted as a benefit of
TDD. When you can’t comprehend the whole problem, take
small steps, one test at a time. However, this approach can
mislead you, encouraging you to focus on and endlessly polish
the easy problems while ignoring the real reason you’re coding.
An interesting example of this happened in 2006, when Ron
Jeffries, a leading figure in the agility movement, started a
series of blog posts which documented his test-driven coding of
a Sudoko solver. After five posts, he’d refined the
representation of the underlying board, refactoring a number of
times until he was happy with the object model. But then he
abandoned the project. It’s interesting to read the blog posts in
order, and watch how a clever person can get sidetracked by the
minutia, reinforced by the glow of passing tests.

As a contrast, Peter Norvig describes an alternative approach

[59]

[60]

which feels very different in character: rather than being driven
by tests, he starts with a basic understanding of how these kinds
of problems are traditionally solved (using constraint
propagation), and then focuses on refining his algorithm. He
addresses board representation in a dozen lines of code that
flow directly from his discussion of notation.

Tests can definitely help drive development. But, as with every
drive, unless you have a destination in mind, you can end up
going in circles.

BACK TO THE CODE

Component-based development has long been a lofty goal of
software development. The idea is that generic software
components should be available and combined just as easily as
common integrated circuits (ICs) are combined. But this works
only if the components you are using are known to be reliable,
and if you have common voltages, interconnect standards,
timing, and so on.

Chips are designed to be tested—not just at the factory, not just
when they are installed, but also in the field when they are
deployed. More complex chips and systems may have a full
Built-In Self Test (BIST) feature that runs some base-level
diagnostics internally, or a Test Access Mechanism (TAM) that
provides a test harness that allows the external environment to
provide stimuli and collect responses from the chip.

We can do the same thing in software. Like our hardware
colleagues, we need to build testability into the software from
the very beginning, and test each piece thoroughly before trying
to wire them together.

[61]

UNIT TESTING

Chip-level testing for hardware is roughly equivalent to unit
testing in software—testing done on each module, in isolation,
to verify its behavior. We can get a better feeling for how a
module will react in the big wide world once we have tested it
throughly under controlled (even contrived) conditions.

A software unit test is code that exercises a module. Typically,
the unit test will establish some kind of artificial environment,
then invoke routines in the module being tested. It then checks
the results that are returned, either against known values or
against the results from previous runs of the same test
(regression testing).

Later, when we assemble our “software ICs” into a complete
system, we’ll have confidence that the individual parts work as
expected, and then we can use the same unit test facilities to test
the system as a whole. We talk about this large-scale checking of
the system in Ruthless and Continuous Testing.

Before we get that far, however, we need to decide what to test
at the unit level. Historically, programmers threw a few random
bits of data at the code, looked at the print statements, and
called it tested. We can do much better.

TESTING AGAINST CONTRACT
We like to think of unit testing as testing against contract (see
Topic 23, Design by Contract). We want to write test cases that
ensure that a given unit honors its contract. This will tell us two
things: whether the code meets the contract, and whether the
contract means what we think it means. We want to test that the
module delivers the functionality it promises, over a wide range

of test cases and boundary conditions.

What does this mean in practice? Let’s start with a simple,
numerical example: a square root routine. Its documented
contract is simple:

 pre-conditions:
 argument >= 0;

 post-conditions:
 ((result * result) - argument).abs <= epsilon*argument;

This tells us what to test:

Pass in a negative argument and ensure that it is rejected.

Pass in an argument of zero to ensure that it is accepted (this is the
boundary value).

Pass in values between zero and the maximum expressible
argument and verify that the difference between the square of the
result and the original argument is less than some small fraction of
the argument (epsilon).

Armed with this contract, and assuming that our routine does
its own pre- and postcondition checking, we can write a basic
test script to exercise the square root function.

Then we can call this routine to test our square root function:

 assertWithinEpsilon(my_sqrt(0), 0)
 assertWithinEpsilon(my_sqrt(2.0), 1.4142135624)
 assertWithinEpsilon(my_sqrt(64.0), 8.0)
 assertWithinEpsilon(my_sqrt(1.0e7), 3162.2776602)
 assertRaisesException fn => my_sqrt(-4.0) end

This is a pretty simple test; in the real world, any nontrivial
module is likely to be dependent on a number of other modules,

so how do we go about testing the combination?

Suppose we have a module A that uses a DataFeed and a
LinearRegression. In order, we would test:

1. DataFeed’s contract, in full
2. LinearRegression’s contract, in full
3. A’s contract, which relies on the other contracts but does not

directly expose them

This style of testing requires you to test subcomponents of a
module first. Once the subcomponents have been verified, then
the module itself can be tested.

If DataFeed and LinearRegression’s tests passed, but A’s test failed, we
can be pretty sure that the problem is in A, or in A’s use of one of
those subcomponents. This technique is a great way to reduce
debugging effort: we can quickly concentrate on the likely
source of the problem within module A, and not waste time
reexamining its subcomponents.

Why do we go to all this trouble? Above all, we want to avoid
creating a “time bomb”—something that sits around unnoticed
and blows up at an awkward moment later in the project. By
emphasizing testing against contract, we can try to avoid as
many of those downstream disasters as possible.

Tip 69 Design to Test

AD HOC TESTING

Not to be confused with “odd hack,” ad-hoc testing is when we

run poke at our code manually. This may be as simple as a
console.log(), or a piece of code entered interactively in a
debugger, IDE environment, or REPL.

At the end of the debugging session, you need to formalize this
ad hoc test. If the code broke once, it is likely to break again.
Don’t just throw away the test you created; add it to the existing
unit test arsenal.

BUILD A TEST WINDOW

Even the best sets of tests are unlikely to find all the bugs;
there’s something about the damp, warm conditions of a
production environment that seems to bring them out of the
woodwork.

This means you’ll often need to test a piece of software once it
has been deployed—with real-world data flowing though its
veins. Unlike a circuit board or chip, we don’t have test pins in
software, but we can provide various views into the internal
state of a module, without using the debugger (which may be
inconvenient or impossible in a production application).

Log files containing trace messages are one such mechanism.
Log messages should be in a regular, consistent format; you
may want to parse them automatically to deduce processing
time or logic paths that the program took. Poorly or
inconsistently formatted diagnostics are just so much “spew”—
they are difficult to read and impractical to parse.

Another mechanism for getting inside running code is the ”hot-
key” sequence or magic URL. When this particular combination
of keys is pressed, or the URL is accessed, a diagnostic control
window pops up with status messages and so on. This isn’t

something you normally would reveal to end users, but it can be
very handy for the help desk.

More generally, you could use a feature switch to enable extra
diagnostics for a particular user or class of users.

A Confession

I (Dave) have been known to tell people that I no longer write tests. Partly I do it to
shake the faith of those who have turned testing into a religion. And partly I say it
because it is (somewhat) true.

I’ve been coding for 45 years, and writing automated tests for more than 30 of them.
Thinking about testing is built in to the way I approach coding. It felt comfortable. And
my personality insists that when something starts to feel comfortable I should move on
to something else.

In this case I decided to stop writing tests for a couple of months and see what it did to
my code. To my surprise, the answer was “not a lot.” So I spent some time working out
why.

I believe the answer is that (for me) most of the benefit of testing comes from thinking
about the tests and their impact on the code. And, after doing it for so long, I could do
that thinking without actually writing tests. My code was still testable; it just wasn’t
tested.

But that ignores the fact that tests are also a way of communicating with other
developers, so I now do write tests on code shared with others or that relies on the
peculiarities of external dependencies.

Andy says I shouldn’t include this sidebar. He worries it will tempt inexperienced
developers not to test. Here’s my compromise:

Should you write tests? Yes. But after you’ve been doing it for 30 years, feel free to
experiment a little to see where the benefit lies for you.

A CULTURE OF TESTING
All software you write will be tested—if not by you and your
team, then by the eventual users—so you might as well plan on
testing it thoroughly. A little forethought can go a long way
toward minimizing maintenance costs and help-desk calls.

You really only have a few choices:

Test First

Test During

Test Never

Test First, including Test-Driven Design, is probably your best
choice in most circumstances, as it ensures that testing
happens. But sometimes that’s not as convenient or useful, so
Test During coding can be a good fallback, where you write
some code, fiddle with it, write the tests for it, then move on to
the next bit. The worst choice is often called “Test Later,” but
who are you kidding? “Test Later” really means “Test Never.”

A culture of testing means all the tests pass all the time. Ignore a
spew of tests that “always fail” makes it easier to ignore all the
tests, and the vicious spiral begins (see Topic 3, Software
Entropy).

Treat test code with the same care as any production code. Keep
it decoupled, clean, and robust. Don’t rely on unreliable things
(see Topic 38, Programming by Coincidence) like the absolute
position of widgets in a GUI system, or exact timestamps in a
server log, or the exact wording of error messages. Testing for
these sorts of things will result in fragile tests.

Tip 70 Test Your Software, or Your Users Will

Make no mistake, testing is part of programming. It’s not
something left to other departments or staff.

Testing, design, coding—it’s all programming.

RELATED SECTIONS INCLUDE

Topic 27, Don’t Outrun Your Headlights

Topic 51, Pragmatic Starter Kit

Доверяй, но проверяй
(Trust, but verify)

Russian proverb

Topic 42 Property-Based Testing

We recommend writing unit tests
for your functions. You do that by
thinking about typical things that
might be a problem, based on your
knowledge of the thing you’re
testing.

There’s a small but potentially
significant problem lurking in that paragraph, though. If you
write the original code and you write the tests, is it possible that
an incorrect assumption could be expressed in both? The code
passes the tests, because it does what it is supposed to based on
your understanding.

One way around this is to have different people write tests and
the code under test, but we don’t like this: as we said in Topic
41, Test to Code, one of the biggest benefits of thinking about
tests is the way it informs the code you write. You lose that
when the work of testing is split from the coding.

Instead, we favor an alternative, where the computer, which
doesn’t share your preconceptions, does some testing for you.

CONTRACTS, INVARIANTS, AND PROPERTIES

In Topic 23, Design by Contract, we talked about the idea that
code has contracts that it meets: you meet the conditions when
you feed it input, and it will make certain guarantees about the

outputs it produces.

There are also code invariants, things that remain true about
some piece of state when it’s passed through a function. For
example, if you sort a list, the result will have the same number
of elements as the original—the length is invariant.

Once we work out our contracts and invariants (which we’re
going to lump together and call properties) we can use them to
automate our testing. What we end up doing is called property-
based testing.

Tip 71
Use Property-Based Tests to Validate Your
Assumptions

As an artificial example, we can build some tests for our sorted
list. We’ve already established one property: the sorted list is
the same size as the original. We can also state that no element
in the result can be greater than the one that follows it.

We can now express that in code. Most languages have some
kind of property-based testing framework. This example is in
Python, and uses the Hypothesis tool and pytest, but the
principles are pretty universal.

Here is the full source of the tests:

proptest/sort.py

 from hypothesis import given
 import hypothesis.strategies as some

 @given(some.lists(some.integers()))
 def test_list_size_is_invariant_across_sorting(a_list):

 original_length = len(a_list)
 a_list.sort()
 assert len(a_list) == original_length

 @given(some.lists(some.text()))
 def test_sorted_result_is_ordered(a_list):
 a_list.sort()
 for i in range(len(a_list) - 1):
 assert a_list[i] <= a_list[i + 1]

Here’s what happens when we run it:

 $ pytest sort.py
 ======================= test session starts

========================
 ...
 plugins: hypothesis-4.14.0

 sort.py .. [100%]

 ===================== 2 passed in 0.95 seconds

=====================

Not much drama there. But, behind the scenes, Hypothesis ran
both of our tests one hundred times, passing in a different list
each time. The lists will have varying lengths, and will have
different contents. It’s as if we’d cooked up 200 individual tests
with 200 random lists.

TEST DATA GENERATION
Like most property-based testing libraries, Hypothesis gives you
a minilanguage for describing the data it should generate. The
language is based around calls to functions in the
hypothesis.strategies module, which we aliased as some, just because
it reads better.

If we wrote:

 @given(some.integers())

Our test function would run multiple times. Each time, it would
be passed a different integer. If instead we wrote the following:

 @given(some.integers(min_value=5, max_value=10).map(lambda x: x *
2))

then we’d get the even numbers between 10 and 20.

You can also compose types, so that

 @given(some.lists(some.integers(min_value=1), max_size=100))

will be lists of natural numbers that are at most 100 elements
long.

This isn’t supposed to be a tutorial on any particular framework,
so we’ll skip a bunch of cool details and instead look at a real-
world example.

FINDING BAD ASSUMPTIONS

We’re writing a simple order processing and stock control
system (because there’s always room for one more). It models
the stock levels with a Warehouse object. We can query a
warehouse to see if something is in stock, remove things from
stock, and get the current stock levels.

Here’s the code:

proptest/stock.py

 class Warehouse:
 def __init__(self, stock):
 self.stock = stock

 def in_stock(self, item_name):

 return (item_name in self.stock) and (self.stock[item_name] > 0)

 def take_from_stock(self, item_name, quantity):
 if quantity <= self.stock[item_name]:
 self.stock[item_name] -= quantity
 else:
 raise Exception("Oversold {}".format(item_name))

 def stock_count(self, item_name):
 return self.stock[item_name]

We wrote a basic unit test, which passes:

proptest/stock.py

 def test_warehouse():
 wh = Warehouse({"shoes": 10, "hats": 2, "umbrellas": 0})
 assert wh.in_stock("shoes")
 assert wh.in_stock("hats")
 assert not wh.in_stock("umbrellas")

 wh.take_from_stock("shoes", 2)
 assert wh.in_stock("shoes")

 wh.take_from_stock("hats", 2)
 assert not wh.in_stock("hats")

Then we wrote a function that processes a request to order
items from the warehouse. It returns a tuple where the first
element is either "ok" or "not available", followed by the item and
requested quantity. We also wrote some tests, and they pass:

proptest/stock.py

 def order(warehouse, item, quantity):
 if warehouse.in_stock(item):
 warehouse.take_from_stock(item, quantity)
 return ("ok", item, quantity)
 else:
 return ("not available", item, quantity)

proptest/stock.py

 def test_order_in_stock():
 wh = Warehouse({"shoes": 10, "hats": 2, "umbrellas": 0})
 status, item, quantity = order(wh, "hats", 1)
 assert status == "ok"
 assert item == "hats"
 assert quantity == 1
 assert wh.stock_count("hats") == 1

 def test_order_not_in_stock():
 wh = Warehouse({"shoes": 10, "hats": 2, "umbrellas": 0})
 status, item, quantity = order(wh, "umbrellas", 1)
 assert status == "not available"
 assert item == "umbrellas"
 assert quantity == 1
 assert wh.stock_count("umbrellas") == 0

 def test_order_unknown_item():
 wh = Warehouse({"shoes": 10, "hats": 2, "umbrellas": 0})
 status, item, quantity = order(wh, "bagel", 1)
 assert status == "not available"
 assert item == "bagel"
 assert quantity == 1

On the surface, everything looks fine. But before we ship the
code, let’s add some property tests.

One thing we know is that stock cannot appear and disappear
across our transaction. This means that if we take some items
from the warehouse, the number we took plus the number
currently in the warehouse should be the same as the number
originally in the warehouse. In the following test, we run our
test with the item parameter chosen randomly from "hat" or
"shoe" and the quantity chosen from 1 to 4:

proptest/stock.py

 @given(item = some.sampled_from(["shoes", "hats"]),
 quantity = some.integers(min_value=1, max_value=4))

 def test_stock_level_plus_quantity_equals_original_stock_level(item,

quantity):
 wh = Warehouse({"shoes": 10, "hats": 2, "umbrellas": 0})
 initial_stock_level = wh.stock_count(item)
 (status, item, quantity) = order(wh, item, quantity)
 if status == "ok":
 assert wh.stock_count(item) + quantity == initial_stock_level

Let’s run it:

 $ pytest stock.py
 . . .
 stock.py:72:
 _
 stock.py:76: in test_stock_level_plus_quantity_equals_original_stock_level
 (status, item, quantity) = order(wh, item, quantity)
 stock.py:40: in order
 warehouse.take_from_stock(item, quantity)
 _

 self = <stock.Warehouse object at 0x10cf97cf8>, item_name = 'hats'
 quantity = 3

 def take_from_stock(self, item_name, quantity):
 if quantity <= self.stock[item_name]:
 self.stock[item_name] -= quantity
 else:
 > raise Exception("Oversold {}".format(item_name))
 E Exception: Oversold hats

 stock.py:16: Exception
 ---------------------------- Hypothesis ----------------------------
 Falsifying example:
 test_stock_level_plus_quantity_equals_original_stock_level(
 item='hats', quantity=3)

It blew up in warehouse.take_from_stock: we tried to remove three
hats from the warehouse, but it only has two in stock.

Our property testing found a faulty assumption: our in_stock

function only checks that there’s at least one of the given item in

stock. Instead we need to make sure we have enough to fill the
order:

proptest/stock1.py

 def in_stock(self, item_name, quantity):
» return (item_name in self.stock) and (self.stock[item_name] >=

quantity)

And we change the order function, too:

proptest/stock1.py

 def order(warehouse, item, quantity):
» if warehouse.in_stock(item, quantity):
 warehouse.take_from_stock(item, quantity)
 return ("ok", item, quantity)
 else:
 return ("not available", item, quantity)

And now our property test passes.

PROPERTY-BASED TESTS OFTEN SURPRISE YOU
In the previous example, we used a property-based test to check
that stock levels were adjusted properly. The test found a bug,
but it wasn’t to do with stock level adjustment. Instead, it found
a bug in our in_stock function.

This is both the power and the frustration of property-based
testing. It’s powerful because you set up some rules for
generating inputs, set up some assertions for validating output,
and then just let it rip. You never quite know what will happen.
The test may pass. An assertion may fail. Or the code may fail
totally because it couldn’t handle the inputs it was given.

The frustration is that it can be tricky to pin down what failed.

Our suggestion is that when a property-based test fails, find out
what parameters it was passing to the test function, and then
use those values to create a separate, regular, unit test. That unit
test does two things for you. First, it lets you focus in on the
problem without all the additional calls being made into your
code by the property-based testing framework. Second, that unit
test acts as a regression test. Because property-based tests
generate random values that get passed to your test, there’s no
guarantee that the same values will be used the next time you
run tests. Having a unit test that forces those values to be used
ensures that this bug won’t slip through.

PROPERTY-BASED TESTS ALSO HELP YOUR DESIGN

When we talked about unit testing, we said that one of the
major benefits was the way it made you think about your code: a
unit test is the first client of your API.

The same is true of property-based tests, but in a slightly
different way. They make you think about your code in terms of
invariants and contracts; you think about what must not
change, and what must be true. This extra insight has a magical
effect on your code, removing edge cases and highlighting
functions that leave data in an inconsistent state.

We believe that property-based testing is complementary to unit
testing: they address different concerns, and each brings its own
benefits. If you’re not currently using them, give them a go.

RELATED SECTIONS INCLUDE

Topic 23, Design by Contract

Topic 25, Assertive Programming

Topic 45, The Requirements Pit

EXERCISES

Exercise 31 (possible answer)

Look back at the warehouse example. Are there any other
properties that you can test?

Exercise 32 (possible answer)

Your company ships machinery. Each machine comes in a crate,
and each crate is rectangular. The crates vary in size. Your job is
to write some code to pack as many crates as possible in a single
layer that fits in the delivery truck. The output of your code is a
list of all the crates. For each crate, the list gives the location in
the truck, along with the width and height. What properties of
the output could be tested?

CHALLENGES
Think about the code you’re currently working on. What are the
properties: the contracts and invariants? Can you use property-
based testing framework to verify these automatically?

Good fences make
good neighbors.

Robert Frost, Mending Wall

Topic 43 Stay Safe Out There

In the first edition’s discussion of
code coupling we made a bold and
naive statement: “we don’t need to
be as paranoid as spies or
dissidents.” We were wrong. In
fact, you do need to be that
paranoid, every day.

As we write this, the daily news is filled with stories of
devastating data breaches, hijacked systems, and cyberfraud.
Hundreds of millions of records stolen at once, billions and
billions of dollars in losses and remediation—and these
numbers are growing rapidly each year. In the vast majority of
cases, it’s not because the attackers were terribly clever, or even
vaguely competent.

It’s because the developers were careless.

THE OTHER 90%

When coding, you may go through several cycles of “it works!”
and “why isn’t that working?” with the occasional “there’s no
way that could have happened…” After several hills and
bumps on this uphill climb, it’s easy to say to yourself, “phew, it
all works!” and proclaim the code done. Of course, it’s not done
yet. You’re 90% done, but now you have the other 90% to
consider.

[62]

The next thing you have to do is analyze the code for ways it can
go wrong and add those to your test suite. You’ll consider things
such as passing in bad parameters, leaking or unavailable
resources; that sort of thing.

In the good old days, this evaluation of internal errors may have
been sufficient. But today that’s only the beginning, because in
addition to errors from internal causes, you need to consider
how an external actor could deliberately screw up the system.
But perhaps you protest, “Oh, no one will care about this code,
it’s not important, no one even knows about this server…” It’s a
big world out there, and most of it is connected. Whether it’s a
bored kid on the other side of the planet, state-sponsored
terrorism, criminal gangs, corporate espionage, or even a
vengeful ex, they are out there and aiming for you. The survival
time of an unpatched, outdated system on the open net is
measured in minutes—or even less.

Security through obscurity just doesn’t work.

SECURITY BASIC PRINCIPLES

Pragmatic Programmers have a healthy amount of paranoia. We
know we have faults and limitations, and that external attackers
will seize on any opening we leave to compromise our systems.
Your particular development and deployment environments will
have their own security-centric needs, but there are a handful of
basic principles that you should always bear in mind:

1. Minimize Attack Surface Area
2. Principle of Least Privilege
3. Secure Defaults
4. Encrypt Sensitive Data
5. Maintain Security Updates

Let’s take a look at each of these.

Minimize Attack Surface Area

The attack surface area of a system is the sum of all access
points where an attacker can enter data, extract data, or invoke
execution of a service. Here are a few examples:

Code complexity leads to attack vectors
Code complexity makes the attack surface larger, with
more opportunities for unanticipated side effects. Think
of complex code as making the surface area more porous
and open to infection. Once again, simple, smaller code is
better. Less code means fewer bugs, fewer opportunities
for a crippling security hole. Simpler, tighter, less
complex code is easier to reason about, easier to spot
potential weaknesses.

Input data is an attack vector
Never trust data from an external entity, always sanitize
it before passing it on to a database, view rendering, or
other processing. Some languages can help with this.
In Ruby, for example, variables holding external input
are tainted, which limits what operations can be
performed on them. For example, this code apparently
uses the wc utility to report on the number of characters
in a file whose name is supplied at runtime:

safety/taint.rb

 puts "Enter a file name to count: "
 name = gets
 system("wc -c #{name}")

A nefarious user could do damage like this:

[63]

 Enter a file name to count:
 test.dat; rm -rf /

However, setting the SAFE level to 1 will taint external
data, which means it can’t be used in dangerous contexts:

safety/taint.rb

» $SAFE = 1

 puts "Enter a file name to count: "
 name = gets
 system("wc -c #{name}")

~~~ session $ ruby taint.rb Enter a file name to count:
test.dat; rm -rf /

code/safety/taint.rb:5:in system’: Insecure operation - system

(SecurityError) from code/safety/taint.rb:5:in main’ ~~~

Unauthenticated services are an attack vector
By their very nature, any user anywhere in the world can
call unauthenticated services, so barring any other
handling or limiting you’ve immediately created an
opportunity for a denial-of-service attack at the very
least. Quite a few of highly public data breaches recently
were caused by developers accidentally putting data in
unauthenticated, publicly readable data stores in the
cloud.

Authenticated services are an attack vector
Keep the number of authorized users at an absolute
minimum. Cull unused, old, or outdated users and
services. Many net-enabled devices have been found to
contain simple default passwords or unused, unprotected
administrative accounts. If an account with deployment



credentials is compromised, your entire product is
compromised.

Output data is an attack vector
There’s a (possibly apocryphal) story about a system that
dutifully reported the error message Password is used by

another user. Don’t give away information. Make sure that
the data you report is appropriate for the authorization of
that user. Truncate or obfuscate potentially risky
information such as Social Security or other government
ID numbers.

Debugging info is an attack vector
There’s nothing as heartwarming as seeing a full stack
trace with data on your local ATM machine, an airport
kiosk, or crashing web page. Information designed to
make debugging easier can make breaking in easier as
well. Make sure any “test window” (discussed here) and
runtime exception reporting is protected from spying
eyes.

Tip 72 Keep It Simple and Minimize Attack Surfaces

Principle of Least Privilege

Another key principle is to use the least amount of privilege for
the shortest time you can get away with. In other words, don’t
automatically grab the highest permission level, such as root or
Administrator. If that high level is needed, take it, do the minimum
amount of work, and relinquish your permission quickly to
reduce the risk. This principle dates back to the early 1970s:

[64]

Every program and every privileged user of the system should
operate using the least amount of privilege necessary to
complete the job.— Jerome Saltzer, Communications of the
ACM, 1974.

Take the login program on Unix-derived systems. It initially
executes with root privileges. As soon as it finishes
authenticating the correct user, though, it drops the high level
privilege to that of the user.

This doesn’t just apply to operating system privilege levels. Does
your application implement different levels of access? Is it a
blunt tool, such as “administrator” vs. “user?” If so, consider
something more finely grained, where your sensitive resources
are partitioned into different categories, and individual users
have permissions for only certain of those categories.

This technique follows the same sort of idea as minimizing
surface area—reducing the scope of attack vectors, both by time
and by privilege level. In this case, less is indeed more.

Secure Defaults

The default settings on your app, or for your users on your site,
should be the most secure values. These might not be the most
user-friendly or convenient values, but it’s better to let each
individual decide for themselves the trade-offs between security
and convenience.

For example, the default for password entry might be to hide
the password as entered, replacing each character with an
asterisk. If you’re entering a password in a crowded public
place, or projected before a large audience, that’s a sensible
default. But some users might want to see the password spelled



out, perhaps for accessibility. If there’s little risk someone is
looking over their shoulder, that’s a reasonable choice for them.

Encrypt Sensitive Data

Don’t leave personally identifiable information, financial data,
passwords, or other credentials in plain text, whether in a
database or some other external file. If the data gets exposed,
encryption offers an additional level of safety.

In Topic 19, Version Control we strongly recommend putting
everything needed for the project under version control. Well,
almost everything. Here’s one major exception to that rule:

Don’t check in secrets, API keys, SSH keys, encryption
passwords or other credentials alongside your source code in
version control.

Keys and secrets need to be managed separately, generally via
config files or environment variables as part of build and
deployment.

Password Antipatterns

One of the fundamental problems with security is that oftentimes good security runs
counter to common sense or common practice. For example, you might think that strict
password requirements would increase security for your application or site. You’d be
wrong.

Strict password policies will actually lower your security. Here’s a short list of very bad
ideas, along with some recommendations from the NIST:

Do not restrict password length to less than 64 characters. NIST recommends
256 as a good maximum length.

Do not truncate the user’s chosen password.

Do not restrict special characters such as []();&%$# or /. See the note about
Bobby Tables earlier in this section. If special characters in your password will
compromise your system, you have bigger problems. The NIST says to
accept all printing ASCII characters, space, and Unicode.

[65]

Do not provide password hints to unauthenticated users, or prompt for specific
types of information (e.g., “what was the name of your first pet?”).

Do not disable the paste function in the browser. Crippling the functionality of
the browser and password managers does not make your system more
secure, in fact it drives users to create simpler, shorter passwords that are
much easier to compromise. Both the NIST in the US and the National Cyber
Security Centre in the UK specifically require verifiers to allow paste
functionality for this reason.

Do not impose other composition rules. For example, do not mandate any
particular mix of upper and lower case, numerics, or special characters, or
prohibit repeating characters, and so on.

Do not arbitrarily require users to change their passwords after some length of
time. Only do this for a valid reason (e.g., if there has been a breach).

You want to encourage long, random passwords with a high degree of entropy. Putting
artificial constraints limits entropy and encourages bad password habits, leaving your
user’s accounts vulnerable to takeover.

Maintain Security Updates

Updating computer systems can be a huge pain. You need that
security patch, but as a side effect it breaks some portion of your
application. You could decide to wait, and defer the update until
later. That’s a terrible idea, because now your system is
vulnerable to a known exploit.

Tip 73 Apply Security Patches Quickly

This tip affects every net-connected device, including phones,
cars, appliances, personal laptops, developer machines, build
machines, production servers, and cloud images. Everything.
And if you think that this doesn’t really matter, just remember
that the largest data breaches in history (so far) were caused by
systems that were behind on their updates.

Don’t let it happen to you.



COMMON SENSE VS. CRYPTO

It’s important to keep in mind that common sense may fail you
when it comes to matters of cryptography. The first and most
important rule when it comes to crypto is never do it yourself.

 Even for something as simple as passwords, common
practices are wrongheaded (see the sidebar Password
Antipatterns). Once you get into the world of crypto, even the
tiniest, most insignificant-looking error can compromise
everything: your clever new, home-made encryption algorithm
can probably be broken by an expert in minutes. You don’t want
to do encryption yourself.

As we’ve said elsewhere, rely only on reliable things: well-
vetted, thoroughly examined, well-maintained, frequently
updated, preferably open source libraries and frameworks.

Beyond simple encryption tasks, take a hard look at other
security-related features of your site or application. Take
authentication, for instance.

In order to implement your own login with password or
biometric authentication, you need to understand how hashes
and salts work, how crackers use things like Rainbow tables,
why you shouldn’t use MD5 or SHA1, and a host of other
concerns. And even if you get all that right, at the end of the day
you’re still responsible for holding onto the data and keeping it
secure, subject to whatever new legislation and legal obligations
come up.

Or, you could take the Pragmatic approach and let someone else
worry about it and use a third-party authentication provider.
This may be an off-the-shelf service you run in-house, or it
could be a third party in the cloud. Authentication services are

[66]

often available from email, phone, or social media providers,
which may or may not be appropriate for your application. In
any case, these folks spend all their days keeping their systems
secure, and they’re better at it than you are.

Stay safe out there.

RELATED SECTIONS INCLUDE

Topic 23, Design by Contract

Topic 24, Dead Programs Tell No Lies

Topic 25, Assertive Programming

Topic 38, Programming by Coincidence

Topic 45, The Requirements Pit



The beginning of
wisdom is to call
things by their proper
name.

Confucius

Topic 44 Naming Things

What’s in a name? When we’re
programming, the answer is
“everything!”

We create names for applications,
subsystems, modules, functions,
variables—we’re constantly
creating new things and bestowing
names on them. And those names
are very, very important, because

they reveal a lot about your intent and belief.

We believe that things should be named according to the role
they play in your code. This means that, whenever you create
something, you need to pause and think “what is my motivation
to create this?”

This is a powerful question, because it takes you out of the
immediate problem-solving mindset and makes you look at the
bigger picture. When you consider the role of a variable or
function, you’re thinking about what is special about it, about
what it can do, and what it interacts with. Often, we find
ourselves realizing that what we were about to do made no
sense, all because we couldn’t come up with an appropriate
name.

There’s some science behind the idea that names are deeply

meaningful. It turns out that the brain can read and understand
words really fast: faster than many other activities. This means
that words have a certain priority when we try to make sense of
something. This can be demonstrated using the Stroop effect.

Look at the following panel. It has a list of color names or
shades, and each is shown in a color or shade. But the names
and colors don’t necessarily match. Here’s part one of the
challenge—say aloud the name of each color as written:

images/stroop_color.png

Now repeat this, but instead say aloud the color used to draw
the word. Harder, eh? It’s easy to be fluent when reading, but
way harder when trying to recognize colors.

Your brain treats written words as something to be respected.
We need to make sure the names we use live up to this.

Let’s look at a couple of examples:

We’re authenticating people who access our site that sells jewelry
made from old graphics cards:

 let user = authenticate(credentials)

The variable is user because it’s always user. But why? It means

[67]

[68]



nothing. How about customer, or buyer? That way we get constant
reminders as we code of what this person is trying to do, and what
that means to us.

We have an instance method that discounts an order:

 public void deductPercent(double amount)
     // ...

Two things here. First, deductPercent is what it does and not why it
does it. Then the name of the parameter amount is at best
misleading: is it an absolute amount, a percentage?
Perhaps this would be better:

 public void applyDiscount(Percentage discount)
   // ...

The method name now makes its intent clear. We’ve also changed
the parameter from a double to a Percentage, a type we’ve defined.
We don’t know about you, but when dealing with percentages we
never know if the value is supposed to be between 0 and 100 or 0.0
and 1.0. Using a type documents what the function expects.

We have a module that does interesting things with Fibonacci
numbers. One of those things is to calculate the  number in the
sequence. Stop and think what you’d call this function.
Most people we ask would call it fib. Seems reasonable, but
remember it will normally be called in the context of its module, so
the call would be Fib.fib(n). How about calling it of or nth instead:

 Fib.of(0)    # => 0
 Fib.nth(20)  # => 4181

When naming things, you’re constantly looking for ways of
clarifying what you mean, and that act of clarification will lead
you to a better understanding of your code as you write it.

However, not all names have to be candidates for a literary
prize.

The Exception That Proves the Rule

While we strive for clarity in code, branding is a different matter entirely.

There’s a well-established tradition that projects and project teams should have
obscure, “clever” names. Names of Pokémon, Marvel superheroes, cute mammals,
Lord of the Rings characters, you name it.

Literally.

HONOR THE CULTURE

Most introductory computer texts will admonish you never to
use single letter variables such as i, j, or k.

We think they’re wrong. Sort of.

In fact, it depends on the culture of that particular
programming language or environment. In the C programming
language, i, j, and k are traditionally used as loop increment
variables, s is used for a character string, and so on. If you
program in that environment, that’s what you are used to seeing
and it would be jarring (and hence wrong) to violate that norm.
On the other hand, using that convention in a different
environment where it’s not expected is just as wrong. You’d
never do something heinous like this Clojure example which
assigns a string to variable i:

 (let [i "Hello World"]
         (println i))

Some language communities prefer camelCase, with embedded
capital letters, while others prefer snake_case with embedded
underscores to separate words. The languages themselves will of
course accept either, but that doesn’t make it right. Honor the
local culture.

[69]



Some languages allow a subset of Unicode in names. Get a sense
of what the community expects before going all cute with names
like ɹǝsn or εξέρχεται.

CONSISTENCY

Emerson is famous for writing “A foolish consistency is the
hobgoblin of little minds…,” but Emerson wasn’t on a team of
programmers.

Every project has its own vocabulary: jargon words that have a
special meaning to the team. “Order” means one thing to a team
creating an online store, and something very different to a team
whose app charts the lineage of religious groups. It’s important
that everyone on the team knows what these words mean, and
that they use them consistently.

One way is to encourage a lot of communication. If everyone
pair programs, and pairs switch frequently, then jargon will
spread osmotically.

Another way is to have a project glossary, listing the terms that
have special meaning to the team. This is an informal
document, possibly maintained on a wiki, possibly just index
cards on a wall somewhere.

After a while, the project jargon will take on a life of its own. As
everyone gets comfortable with the vocabulary, you’ll be able to
use the jargon as a shorthand, expressing a lot of meaning
accurately and concisely. (This is exactly what a pattern
language is.)

RENAMING IS EVEN HARDER

No matter how much effort you put in up front, things change.
Code is refactored, usage shifts, meaning becomes subtly
altered. If you aren’t vigilant about updating names as you go,
you can quickly descend into a nightmare much worse than
meaningless names: misleading names. Have you ever had
someone explain inconsistencies in code such as, “The routine
called getData really writes data to an archive file”?

As we discuss in Topic 3, Software Entropy, when you spot a
problem, fix it—right here and now. When you see a name that
no longer expresses the intent, or is misleading or confusing, fix
it. You’ve got full regression tests, so you’ll spot any instances
you may have missed.

Tip 74 Name Well; Rename When Needed

If for some reason you can’t change the now-wrong name, then
you’ve got a bigger problem: an ETC violation (see Topic 8, The
Essence of Good Design). Fix that first, then change the
offending name. Make renaming easy, and do it often.

Otherwise you’ll have to explain to the new folks on the team
that getData really writes data to a file, and you’ll have to do it
with a straight face.

RELATED SECTIONS INCLUDE

Topic 3, Software Entropy

Topic 40, Refactoring

Topic 45, The Requirements Pit

CHALLENGES



When you find a function or method with an overly generic name,
try and rename it to express all the things it really does. Now it’s an
easier target for refactoring.

In our examples, we suggested using more specific names such as
buyer instead of the more traditional and generic user. What other
names do you habitually use that could be better?

Are the names in your system congruent with user terms from the
domain? If not, why? Does this cause a Stroop-effect style cognitive
dissonance for the team?

Are names in your system hard to change? What can you do to fix
that particular broken window?

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Footnotes

Note from the battle-scarred: UTC is there for a reason. Use it.

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation

See Topic 50, Coconuts Don’t Cut It.

You can also go too far here. We once knew a developer who rewrote all source he was
given because he had his own naming conventions.

https://media-
origin.pragprog.com/titles/tpp20/code/algorithm_speed/sort/src/main.rs

And yes, we did voice our concerns over the title.

Originally spotted in UML Distilled: A Brief Guide to the Standard Object Modeling
Language [Fow00].

This is excellent advice in general (see Topic 27, Don’t Outrun Your Headlights).

Some folks argue that test-first and test-driven development are two different things,
saying that the intents of the two are different. However, historically, test-first (which
comes from eXtreme Programming) was identical to what people now call TDD.

https://ronjeffries.com/categories/sudoku. A big “thank you” to Ron for letting us use
this story.

http://norvig.com/sudoku.html

Copyright © 2020 Pearson Education, Inc.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

We’ve been trying since at least 1986, when Cox and Novobilski coined the term
“software IC” in their Objective-C book Object-Oriented Programming Object-Oriented
Programming: An Evolutionary Approach [CN91].

See Topic 20, Debugging.

Remember our good friend, little Bobby Tables (https://xkcd.com/327)? While you’re
reminiscing have a look at https://bobby-tables.com, which lists ways of sanitizing data
passed to database queries.

This technique has proven to be successful at the CPU chip level, where well-known
exploits target debugging and administrative facilities. Once cracked, the entire machine
is left exposed.

NIST Special Publication 800-63B: Digital Identity Guidelines: Authentication and
Lifecycle Management, available free online at https://doi.org/10.6028/NIST.SP.800-
63b

Unless you have a PhD in cryptography, and even then only with major peer review,
extensive field trials with a bug bounty, and budget for long-term maintenance.

Studies of Interference in Serial Verbal Reactions [Str35]

We have two versions of this panel. One uses different colors, and the other uses shades
of gray. If you’re seeing this in black and white and want the color version, or if you’re
having trouble distinguishing colors and want to try the grayscale version, pop over to
https://pragprog.com/the-pragmatic-programmer/stroop-effect.

Do you know why i is commonly used as a loop variable? The answer comes from over
60 years ago, when variables starting with I through N were integers in the original
FORTRAN. And FORTRAN was in turn influenced by algebra.



Chapter 8

Before the Project
 

At the very beginning of a project, you and the team need to
learn the requirements. Simply being told what to do or
listening to users is not enough: read Topic 45, The
Requirements Pit and learn how to avoid the common traps and
pitfalls.

Conventional wisdom and constraint management are the
topics of Topic 46, Solving Impossible Puzzles. Whether you are
performing requirements, analysis, coding, or testing, difficult
problems will crop up. Most of the time, they won’t be as
difficult as they first appear to be.

And when that impossible project comes up, we like to turn to
our secret weapon: Topic 47, Working Together. And by
“working together” we don’t mean sharing a massive
requirements document, flinging heavily cc’d emails or
enduring endless meetings. We mean solving problems together
while coding. We’ll show you who you need and how to start.

Even though the Agile Manifesto begins with “Individuals and
interactions over processes and tools,” virtually all “agile”
projects begin with an ironic discussion of which process and
which tools they’ll use. But no matter how well thought out it is,

and regardless of which “best practices” it includes, no method
can replace thinking. You don’t need any particular process or
tool, what you do need is the Topic 48, The Essence of Agility.

With these critical issues sorted out before the project gets
under way, you can be better positioned to avoid “analysis
paralysis” and actually begin—and complete—your successful
project.



Perfection is achieved,
not when there is
nothing left to add
but when there is
nothing left to take
away...

Antoine de St. Exupery, Wind,
Sand, and Stars, 1939

Topic 45 The Requirements Pit

Many books and tutorials refer to
requirements gathering as an
early phase of the project. The
word “gathering” seems to imply a
tribe of happy analysts, foraging
for nuggets of wisdom that are
lying on the ground all around
them while the Pastoral Symphony
plays gently in the background.
“Gathering” implies that the
requirements are already there—
you need merely find them, place
them in your basket, and be

merrily on your way.

It doesn’t quite work that way. Requirements rarely lie on the
surface. Normally, they’re buried deep beneath layers of
assumptions, misconceptions, and politics. Even worse, often
they don’t really exist at all.

Tip 75 No One Knows Exactly What They Want

THE REQUIREMENTS MYTH

In the early days of software, computers were more valuable (in
terms of amortized cost per hour) than the people who worked
with them. We saved money by trying to get things correct the

first time. Part of that process was trying to specify exactly what
we were going to get the machine to do. We’d start by getting a
specification of the requirements, parlay that into a design
document, then into flowcharts and pseudo code, and finally
into code. Before feeding it into a computer, though, we’d spend
time desk checking it.

It cost a lot of money. And that cost meant that people only tried
to automate something when they knew exactly what they
wanted. As early machines were fairly limited, the scope of
problems they solved was constrained: it was actually possible
to understand the whole problem before you started.

But that is not the real world. The real world is messy,
conflicted, and unknown. In that world, exact specifications of
anything are rare, if not downright impossible.

That’s where we programmers come in. Our job is to help
people understand what they want. In fact, that’s probably our
most valuable attribute. And it’s worth repeating:

Tip 76
Programmers Help People Understand What They 
Want

PROGRAMMING AS THERAPY
Let’s call the people who ask us to write software our clients.

The typical client comes to us with a need. The need may be
strategic, but it is just as likely to be a tactical issue: a response
to a current problem. The need may be for a change to an
existing system or it may ask for something new. The need will
sometimes be expressed in business terms, and sometimes in



technical ones.

The mistake new developers often make is to take this
statement of need and implement a solution for it.

In our experience, this initial statement of need is not an
absolute requirement. The client may not realize this, but it is
really an invitation to explore.

Let’s take a simple example.

You work for a publisher of paper and electronic books. You’re
given a new requirement:

Shipping should be free on all orders costing $50 or more.

Stop for a second and imagine yourself in that position. What’s
the first thing that comes to mind?

The chances are very good that you had questions:

Does the $50 include tax?

Does the $50 include current shipping charges?

Does the $50 have to be for paper books, or can the order also
include ebooks?

What kind of shipping is offered? Priority? Ground?

What about international orders?

How often will the $50 limit change in the future?

That’s what we do. When given something that seems simple,
we annoy people by looking for edge cases and asking about

them.

The chances are the client will have already thought of some of
these, and just assumed that the implementation would work
that way. Asking the question just flushes that information out.

But other questions will likely be things that the client hadn’t
previously considered. That’s where things get interesting, and
where a good developer learns to be diplomatic.

You:
We were wondering about the $50 total. Does that
include what we’d normally charge for shipping?

Client:
Of course. It’s the total they’d pay us.

You:
That’s nice and simple for our customers to understand: I
can see the attraction. But I can see some less scrupulous
customers trying to game that system.

Client:
How so?

You:
Well, let’s say they buy a book for $25, and then select
overnight shipping, the most expensive option. That’ll
likely be about $30, making the whole order $55. We’d
then make the shipping free, and they’d get overnight
shipping on a $25 book for just $25.

(At this point the experienced developer stops. Deliver



facts, and let the client make the decisions,)

Client:
Ouch. That certainly wasn’t what I intended; we’d lose
money on those orders. What are the options?

And this starts an exploration. Your role in this is to interpret
what the client says and to feed back to them the implications.
This is both an intellectual process and a creative one: you’re
thinking on your feet and you’re contributing to a solution that
is likely to be better than one that either you or the client would
have produced alone.

REQUIREMENTS ARE A PROCESS

In the previous example, the developer took the requirements
and fed-back a consequence to the client. This initiated the
exploration. During that exploration, you are likely to come up
with more feedback as the client plays with different solutions.
This is the reality of all requirements gathering:

Tip 77 Requirements Are Learned in a Feedback Loop

Your job is to help the client understand the consequences of
their stated requirements. You do that by generating feedback,
and letting them use that feedback to refine their thinking.

In the previous example, the feedback was easy to express in
words. Sometimes that’s not the case. And sometimes you
honestly won’t know enough about the domain to be as specific
as that.

In those cases, Pragmatic Programmers rely on the “is this what

you meant?” school of feedback. We produce mockups and
prototypes, and let the client play with them. Ideally the things
we produce are flexible enough that we can change them during
our discussions with the client, letting us respond to “that isn’t
what I meant” with “so more like this?”

Sometimes these mockups can be thrown together in an hour or
so. They are obviously just hacks to get an idea across.

But the reality is that all of the work we do is actually some form
of mockup. Even at the end of a project we’re still interpreting
what our client wants. In fact, by that point we’re likely to have
more clients: the QA people, operations, marketing, and maybe
even test groups of customers.

So the Pragmatic Programmer looks at all of the project as a
requirements gathering exercise. That’s why we prefer short
iterations; ones that end with direct client feedback. This keeps
us on track, and makes sure that if we do go in the wrong
direction, the amount of time lost is minimized.

WALK IN YOUR CLIENT’S SHOES

There’s a simple technique for getting inside your clients’ heads
that isn’t used often enough: become a client. Are you writing a
system for the help desk? Spend a couple of days monitoring the
phones with an experienced support person. Are you
automating a manual stock control system? Work in the
warehouse for a week.

As well as giving you insight into how the system will really be
used, you’d be amazed at how the request “May I sit in for a
week while you do your job?’’ helps build trust and establishes a
basis for communication with your clients. Just remember not

[70]



to get in the way!

Tip 78 Work with a User to Think Like a User

Gathering feedback is also the time to start to build a rapport
with your client base, learning their expectations and hopes for
the system you are building. See Topic 52, Delight Your Users,
for more.

REQUIREMENTS VS. POLICY

Let’s imagine that while discussing a Human Resources system,
a client says “Only an employee’s supervisors and the personnel
department may view that employee’s records.” Is this
statement truly a requirement? Perhaps today, but it embeds
business policy in an absolute statement.

Business policy? Requirement? It’s a relatively subtle
distinction, but it’s one that will have profound implications for
the developers. If the requirement is stated as “Only supervisors
and personnel can view an employee record,” the developer may
end up coding an explicit test every time the application
accesses this data. However, if the statement is “Only
authorized users may access an employee record,” the developer
will probably design and implement some kind of access control
system. When policy changes (and it will), only the metadata for
that system will need to be updated. In fact, gathering
requirements in this way naturally leads you to a system that is
well factored to support metadata.

In fact, there’s a general rule here:

Tip 79 Policy Is Metadata

Implement the general case, with the policy information as an
example of the type of thing the system needs to support.

REQUIREMENTS VS. REALITY

In a January 1999 Wired magazine article,  producer and
musician Brian Eno described an incredible piece of technology
—the ultimate mixing board. It does anything to sound that can
be done. And yet, instead of letting musicians make better
music, or produce a recording faster or less expensively, it gets
in the way; it disrupts the creative process.

To see why, you have to look at how recording engineers work.
They balance sounds intuitively. Over the years, they develop an
innate feedback loop between their ears and their fingertips—
sliding faders, rotating knobs, and so on. However, the interface
to the new mixer didn’t leverage off those abilities. Instead, it
forced its users to type on a keyboard or click a mouse. The
functions it provided were comprehensive, but they were
packaged in unfamiliar and exotic ways. The functions the
engineers needed were sometimes hidden behind obscure
names, or were achieved with nonintuitive combinations of
basic facilities.

This example also illustrates our belief that successful tools
adapt to the hands that use them. Successful requirements
gathering takes this into account. And this is why early
feedback, with prototypes or tracer bullets, will let your clients
say “yes, it does what I want, but not how I want.”

DOCUMENTING REQUIREMENTS

We believe that the best requirements documentation, perhaps

[71]



the only requirements documentation, is working code.

But that doesn’t mean that you can get away without
documenting your understanding of what the client wants. It
just means that those documents are not a deliverable: they are
not something that you give to a client to sign off on. Instead,
they are simply mileposts to help guide the implementation
process.

Requirements Documents Are Not for Clients

In the past, both Andy and Dave have been on projects that
produced incredibly detailed requirements. These substantial
documents expanded on the client’s initial two-minute
explanation of what was wanted, producing inch-thick
masterpieces full of diagrams and tables. Things were specified
to the point where there was almost no room for ambiguity in
the implementation. Given sufficiently powerful tools, the
document could actually be the final program.

Creating these documents was a mistake for two reasons. First,
as we’ve discussed, the client doesn’t really know what they
want up front. So when we take what they say and expand it into
what is almost a legal document, we are building an incredibly
complex castle on quicksand.

You might say “but then we take the document to the client and
they sign off on it. We’re getting feedback.” And that leads us to
the second problem with these requirement specifications: the
client never reads them.

The client uses programmers because, while the client is
motivated by solving a high-level and somewhat nebulous
problem, programmers are interested in all the details and

nuances. The requirements document is written for developers,
and contains information and subtleties that are sometimes
incomprehensible and frequently boring to the client.

Submit a 200-page requirements document, and the client will
likely heft it to decide if it weighs enough to be important, they
may read the first couple of paragraphs (which is why the first
two paragraphs are always titled Management Summary), and
they may flick through the rest, sometimes stopping when
there’s a neat diagram.

This isn’t putting the client down. But giving them a large
technical document is like giving the average developer a copy
of the Iliad in Homeric Greek and asking them to code the video
game from it.

Requirements Documents Are for Planning

So we don’t believe in the monolithic, heavy-enough-to-stun-
an-ox, requirements document. We do, however, know that
requirements have to be written down, simply because
developers on a team need to know what they’ll be doing.

What form does this take? We favor something that can fit on a
real (or virtual) index card. These short descriptions are often
called user stories. They describe what a small portion of the
application should do from the perspective of a user of that
functionality.

When written this way, the requirements can be placed on a
board and moved around to show both status and priority.

You might think that a single index card can’t hold the
information needed to implement a component of the



application. You’d be right. And that’s part of the point. By
keeping this statement of requirements short, you’re
encouraging developers to ask clarifying questions. You’re
enhancing the feedback process between clients and coders
before and during the creation of each piece of code.

OVERSPECIFICATION

Another big danger in producing a requirements document is
being too specific. Good requirements are abstract. Where
requirements are concerned, the simplest statement that
accurately reflects the business need is best. This doesn’t mean
you can be vague—you must capture the underlying semantic
invariants as requirements, and document the specific or
current work practices as policy.

Requirements are not architecture. Requirements are not
design, nor are they the user interface. Requirements are need.

JUST ONE MORE WAFER-THIN MINT…
Many project failures are blamed on an increase in scope—also
known as feature bloat, creeping featurism, or requirements
creep. This is an aspect of the boiled-frog syndrome from Topic
4, Stone Soup and Boiled Frogs. What can we do to prevent
requirements from creeping up on us?

The answer (again) is feedback. If you’re working with the client
in iterations with constant feedback, then the client will
experience first-hand the impact of “just one more feature.”
They’ll see another story card go up on the board, and they’ll get
to help choose another card to move into the next iteration to
make room. Feedback works both ways.

MAINTAIN A GLOSSARY

As soon as you start discussing requirements, users and domain
experts will use certain terms that have specific meaning to
them. They may differentiate between a “client” and a
“customer,” for example. It would then be inappropriate to use
either word casually in the system.

Create and maintain a project glossary—one place that defines
all the specific terms and vocabulary used in a project. All
participants in the project, from end users to support staff,
should use the glossary to ensure consistency. This implies that
the glossary needs to be widely accessible—a good argument for
online documentation.

Tip 80 Use a Project Glossary

It’s hard to succeed on a project if users and developers call the
same thing by different names or, even worse, refer to different
things by the same name.

RELATED SECTIONS INCLUDE

Topic 5, Good-Enough Software

Topic 7, Communicate!

Topic 11, Reversibility

Topic 13, Prototypes and Post-it Notes

Topic 23, Design by Contract

Topic 43, Stay Safe Out There

Topic 44, Naming Things

Topic 46, Solving Impossible Puzzles



Topic 52, Delight Your Users

EXERCISES

Exercise 33 (possible answer)

Which of the following are probably genuine requirements?
Restate those that are not to make them more useful (if
possible).

1. The response time must be less than ~500ms.
2. Modal windows will have a gray background.
3. The application will be organized as a number of front-end

processes and a back-end server.
4. If a user enters non-numeric characters in a numeric field, the

system will flash the field background and not accept them.
5. The code and data for this embedded application must fit within

32Mb.

CHALLENGES

Can you use the software you are writing? Is it possible to have a
good feel for requirements without being able to use the software
yourself?

Pick a non-computer-related problem you currently need to solve.
Generate requirements for a noncomputer solution.

Gordius, the King of
Phrygia, once tied a
knot that no one could
untie. It was said that
whoever solved the
riddle of the Gordian
Knot would rule all of
Asia. So along comes
Alexander the Great,
who chops the knot to
bits with his sword.
Just a little different
interpretation of the
requirements, that’s
all…. And he did end
up ruling most of Asia.

Topic 46 Solving Impossible Puzzles

Every now and again, you will find
yourself embroiled in the middle of
a project when a really tough
puzzle comes up: some piece of
engineering that you just can’t get
a handle on, or perhaps some bit
of code that is turning out to be
much harder to write than you
thought. Maybe it looks
impossible. But is it really as hard
as it seems?

Consider real-world puzzles—
those devious little bits of wood,
wrought iron, or plastic that seem
to turn up as Christmas presents
or at garage sales. All you have to
do is remove the ring, or fit the T-
shaped pieces in the box, or
whatever.

So you pull on the ring, or try to
put the Ts in the box, and quickly

discover that the obvious solutions just don’t work. The puzzle
can’t be solved that way. But even though it’s obvious, that
doesn’t stop people from trying the same thing—over and over—
thinking there must be a way.



Of course, there isn’t. The solution lies elsewhere. The secret to
solving the puzzle is to identify the real (not imagined)
constraints, and find a solution therein. Some constraints are
absolute; others are merely preconceived notions. Absolute
constraints must be honored, however distasteful or stupid they
may appear to be.

On the other hand, as Alexander proved, some apparent
constraints may not be real constraints at all. Many software
problems can be just as sneaky.

DEGREES OF FREEDOM

The popular buzz-phrase “thinking outside the box” encourages
us to recognize constraints that might not be applicable and to
ignore them. But this phrase isn’t entirely accurate. If the “box”
is the boundary of constraints and conditions, then the trick is
to find the box, which may be considerably larger than you
think.

The key to solving puzzles is both to recognize the constraints
placed on you and to recognize the degrees of freedom you do
have, for in those you’ll find your solution. This is why some
puzzles are so effective; you may dismiss potential solutions too
readily.

For example, can you connect all of the dots in the following
puzzle and return to the starting point with just three straight
lines—without lifting your pen from the paper or retracing your
steps (Math Puzzles & Games [Hol92])?

You must challenge any preconceived notions and evaluate
whether or not they are real, hard-and-fast constraints.

It’s not whether you think inside the box or outside the box. The
problem lies in finding the box—identifying the real constraints.

Tip 81 Don’t Think Outside the Box—Find the Box

When faced with an intractable problem, enumerate all the
possible avenues you have before you. Don’t dismiss anything,
no matter how unusable or stupid it sounds. Now go through
the list and explain why a certain path cannot be taken. Are you
sure? Can you prove it?

Consider the Trojan horse—a novel solution to an intractable
problem. How do you get troops into a walled city without being
discovered? You can bet that “through the front door” was
initially dismissed as suicide.

Categorize and prioritize your constraints. When woodworkers
begin a project, they cut the longest pieces first, then cut the
smaller pieces out of the remaining wood. In the same manner,
we want to identify the most restrictive constraints first, and fit
the remaining constraints within them.

By the way, a solution to the Four Posts puzzle is shown at the



end of the book.

GET OUT OF YOUR OWN WAY!

Sometimes you will find yourself working on a problem that
seems much harder than you thought it should be. Maybe it
feels like you’re going down the wrong path—that there must be
an easier way than this! Perhaps you are running late on the
schedule now, or even despair of ever getting the system to work
because this particular problem is “impossible.”

This is an ideal time to do something else for a while. Work on
something different. Go walk the dog. Sleep on it.

Your conscious brain is aware of the problem, but your
conscious brain is really pretty dumb (no offense). So it’s time
to give your real brain, that amazing associative neural net that
lurks below your consciousness, some space. You’ll be amazed
how often the answer will just pop into your head when you
deliberately distract yourself.

If that sounds too mystical for you, it isn’t. Psychology Today
reports:

To put it plainly—people who were distracted did better on a
complex problem-solving task than people who put in conscious
effort.

If you’re still not willing to drop the problem for a while, the
next best thing is probably finding someone to explain it to.
Often, the distraction of simply talking about it will lead you to
enlightenment.

Have them ask you questions such as:

[72]

Why are you solving this problem?

What’s the benefit of solving it?

Are the problems you’re having related to edge cases? Can you
eliminate them?

Is there a simpler, related problem you can solve?

This is another example of Rubber Ducking in practice.

FORTUNE FAVORS THE PREPARED MIND
Louis Pasteur is reported to have said:

Dans les champs de l’observation le hasard ne favorise que les
esprits préparés.
(When it comes to observation, fortune favors the prepared
mind.)

That is true for problem solving, too. In order to have those
eureka! moments, your nonconscious brain needs to have
plenty of raw material; prior experiences that can contribute to
an answer.

A great way to feed your brain is to give it feedback on what
works and what doesn’t work as you do your daily job. And we
describe a great way to do that using an Engineering Daybook
(Topic 22, Engineering Daybooks).

And always remember the advice on the cover of The
Hitchhiker’s Guide to the Galaxy: DON’T PANIC.

RELATED SECTIONS INCLUDE

Topic 5, Good-Enough Software



Topic 37, Listen to Your Lizard Brain

Topic 45, The Requirements Pit

Andy wrote an entire book about this kind of thing: Pragmatic
Thinking and Learning: Refactor Your Wetware [Hun08].

CHALLENGES

Take a hard look at whatever difficult problem you are embroiled in
today. Can you cut the Gordian knot? Do you have to do it this way?
Do you have to do it at all?

Were you handed a set of constraints when you signed on to your
current project? Are they all still applicable, and is the
interpretation of them still valid?

I’ve never met a
human being who
would want to read
17,000 pages of
documentation, and if
there was, I’d kill him
to get him out of the
gene pool.

Joseph Costello, President of
Cadence

Topic 47 Working Together

It was one of those “impossible”
projects, the kind you hear about
that sounds both exhilarating and
terrifying at the same time. An
ancient system was approaching
end-of-life, the hardware was
physically going away, and a
brand-new system had to be
crafted that would match the
(often undocumented) behavior
exactly. Many hundreds of
millions of dollars of other
people’s money would pass
through this system, and the
deadline from inception to

deployment was on the order of months.

And that is where Andy and Dave first met. An impossible
project with a ridiculous deadline. There was only one thing that
made the project a roaring success. The expert who had
managed this system for years was sitting right there in her
office, just across the hall from our broom closet–sized
development room. Continuously available for questions,
clarifications, decisions, and demos.

Throughout this book we recommend working closely with
users; they are part of your team. On that first project together,



we practiced what now might be called pair programming or
mob programming: one person typing code while one or more
other team members comment, ponder, and solve problems
together. It’s a powerful way of working together that
transcends endless meetings, memos, and overstuffed legalistic
documentation prized for weight over usefulness.

And that’s what we really mean by “working with”: not just
asking questions, having discussions, and taking notes, but
asking questions and having discussions while you’re actually
coding.

Conway's Law

In 1967, Melvin Conway introduced an idea in How do Committees Invent? [Con68]
which would become known as Conway’s Law:

Organizations which design systems are constrained to produce designs which are
copies of the communication structures of these organizations.

That is, the social structures and communication pathways of the team and the
organization will be mirrored in the application, website, or product being developed.
Various studies have shown strong support for this idea. We’ve witnessed it first-hand
countless times—for example, in teams where no one talks to each other at all,
resulting in siloed, "stove-pipe" systems. Or teams that were split into two, resulting in a
client/server or frontend/backend division.

Studies also offer support for the reverse principle: you can deliberately structure your
team the way you want your code to look. For example, geographically distributed
teams are shown to tend toward more modular, distributed software.

But most importantly, development teams that include users will produce software that
clearly reflects that involvement, and teams that don’t bother will reflect that, too.

PAIR PROGRAMMING

Pair programming is one of the practices of eXtreme
Programming that has become popular outside of XP itself. In
pair programming, one developer operates the keyboard, and

the other does not. Both work on the problem together, and can
switch typing duties as needed.

There are many benefits to pair programming. Different people
bring different backgrounds and experience, different problem-
solving techniques and approaches, and differing levels of focus
and attention to any given problem. The developer acting as
typist must focus on the low-level details of syntax and coding
style, while the other developer is free to consider higher-level
issues and scope. While that might sound like a small
distinction, remember that we humans have only so much brain
bandwidth. Fiddling around with typing esoteric words and
symbols that the compiler will grudgingly accept takes a fair bit
of our own processing power. Having a second developer’s full
brain available during the task brings a lot more mental power
to bear.

The inherent peer-pressure of a second person helps against
moments of weakness and bad habits of naming variables foo

and such. You’re less inclined to take a potentially embarrassing
shortcut when someone is actively watching, which also results
in higher-quality software.

MOB PROGRAMMING

And if two heads are better than one, what about having a dozen
diverse people all working on the same problem at the same
time, with one typist?

Mob programming, despite the name, does not involve torches
or pitchforks. It’s an extension of pair programming that
involves more than just two developers. Proponents report great
results using mobs to solve hard problems. Mobs can easily
include people not usually considered part of the development



team, including users, project sponsors, and testers. In fact, in
our first “impossible” project together, it was a common sight
for one of us to be typing while the other discussed the issue
with our business expert. It was a small mob of three.

You might think of mob programming as tight collaboration
with live coding.

WHAT SHOULD I DO?

If you’re currently only programming solo, maybe try pair
programming. Give it a minimum of two weeks, only a few
hours at a time, as it will feel strange at first. To brainstorm new
ideas or diagnose thorny issues, perhaps try a mob
programming session.

If you are already pairing or mobbing, who’s included? Is it just
developers, or do you allow members of your extended team to
participate: users, testers, sponsors…?

And as with all collaboration, you need to manage the human
aspects of it as well as the technical. Here are just a few tips to
get started:

Build the code, not your ego. It’s not about who’s brightest; we all
have our moments, good and bad.

Start small. Mob with only 4-5 people, or start with just a few pairs,
in short sessions.

Criticize the code, not the person. “Let’s look at this block” sounds
much better than “you’re wrong.”

Listen and try to understand others’ viewpoints. Different isn’t
wrong.

Conduct frequent retrospectives to try and improve for next time.

Coding in the same office or remote, alone, in pairs, or in mobs,
are all effective ways of working together to solve problems. If
you and your team have only ever done it one way, you might
want to experiment with a different style. But don’t just jump in
with a naive approach: there are rules, suggestions, and
guidelines for each of these development styles. For instance,
with mob programming you swap out the typist every 5-10
minutes.

Do some reading and research, from both textbook and
experience reports, and get a feel for the advantages and pitfalls
you may encounter. You might want to start by coding a simple
exercise, and not just jump straight into your toughest
production code.

But however you go about it, let us suggest one final piece of
advice:

Tip 82 Don’t Go into the Code Alone



You keep using that
word, I do not think it
means
what you think it
means.

Inigo Montoya, The Princess
Bride

Topic 48 The Essence of Agility

Agile is an adjective: it’s how you
do something. You can be an agile
developer. You can be on a team
that adopts agile practices, a team
that responds to change and
setbacks with agility. Agility is
your style, not you.

Tip 83 Agile Is Not a Noun; Agile Is How You Do Things

As we write this, almost 20 years after the inception of the
Manifesto for Agile Software Development,  we see many,
many developers successfully applying its values. We see many
fantastic teams who find ways to take these values and use them
to guide what they do, and how they change what they do.

But we also see another side of agility. We see teams and
companies eager for off-the-shelf solutions: Agile-in-a-Box. And
we see many consultants and companies all too happy to sell
them what they want. We see companies adopting more layers
of management, more formal reporting, more specialized
developers, and more fancy job titles which just mean “someone
with a clipboard and a stopwatch.”

[73]

[74]

We feel that many people have lost sight of the true meaning of
agility, and we’d like to see folks return to the basics.

Remember the values from the manifesto:

We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.

Anyone selling you something that increases the importance on
things on the right over things on the left clearly doesn’t value
the same things that we and the other manifesto writers did.

And anyone selling you a solution-in-a-box hasn’t read the
introductory statement. The values are motivated and informed
by the continuous act of uncovering better ways to produce
software. This is not a static document. It’s suggestions for a
generative process.

THERE CAN NEVER BE AN AGILE PROCESS
In fact, whenever someone says “do this, and you’ll be agile,”
they are wrong. By definition.



Because agility, both in the physical world and in software
development, is all about responding to change, responding to
the unknowns you encounter after you set out. A running
gazelle doesn’t go in a straight line. A gymnast makes hundreds
of corrections a second as they respond to changes in their
environment and minor errors in their foot placement.

So it is with teams and individual developers. There is no single
plan you can follow when you develop software. Three of the
four values tell you that. They’re all about gathering and
responding to feedback.

The values don’t tell you what to do. They tell you what to look
for when you decide for yourself what to do.

These decisions are always contextual: they depend on who you
are, the nature of your team, your application, your tooling,
your company, your customer, the outside world; an incredibly
large number of factors, some major and some trivial. No fixed,
static plan can survive this uncertainty.

SO WHAT DO WE DO?

No one can tell you what to do. But we think we can tell you
something about the spirit with which you do it. It all boils
down to how you deal with uncertainty. The manifesto suggests
that you do this by gathering and acting on feedback. So here’s
our recipe for working in an agile way:

1. Work out where you are.

2. Make the smallest meaningful step towards where you want to be.

3. Evaluate where you end up, and fix anything you broke.

Repeat these steps until you’re done. And use them recursively,
at every level of everything you do.

Sometimes even the most trivial-seeming decision becomes
important when you gather feedback.

“Now my code needs to get the account owner.

 let user = accountOwner(accountID);

Hmmm… user is a useless name. I’ll make it owner.

 let owner = accountOwner(accountID);

But now that feels a little redundant. What am I actually trying
to do here? The story says that I’m sending this person an email,
so I need to find their email address. Maybe I don’t need the
whole account owner at all.

 let email = emailOfAccountOwner(accountID);

By applying the feedback loop at a really low level (the naming
of a variable) we’ve actually improved the design of the overall
system, reducing the coupling between this code and the code
that deals with accounts.



The feedback loop also applies at the highest level of a project.
Some of our most successful work has happened when we
started working on a client’s requirements, took a single step,
and realized that what we were about to do wasn’t necessary,
that the best solution didn’t even involve software.

This loop applies outside the scope of a single project. Teams
should apply it to review their process and how well it worked. A
team that doesn’t continuously experiment with their process is
not an agile team.

AND THIS DRIVES DESIGN

In Topic 8, The Essence of Good Design we assert that the
measure of design is how easy the result of that design is to
change: a good design produces something that’s easier to
change than a bad design.

And this discussion about agility explains why that’s the case.

You make a change, and discover you don’t like it. Step 3 in our
list says we have to be able to fix what we break. To make our
feedback loop efficient, this fix has to be as painless as possible.
If it isn’t, we’ll be tempted to shrug it off and leave it unfixed.
We talk about this effect in Topic 3, Software Entropy. To make
this whole agile thing work, we need to practice good design,
because good design makes things easy to change. And if it’s
easy to change, we can adjust, at every level, without any
hesitation.

That is agility.

RELATED SECTIONS INCLUDE

Topic 27, Don’t Outrun Your Headlights

Topic 40, Refactoring

Topic 50, Coconuts Don’t Cut It

CHALLENGES

The simple feedback loop isn’t just for software. Think of other
decisions you’ve made recently. Could any of them have been
improved by thinking about how you might be able to undo
them if things didn’t take you in the direction you were going?
Can you think of ways you can improve what you do by
gathering and acting on feedback?

Copyright © 2020 Pearson Education, Inc.

[70]

[71]

[72]

[73]

[74]

Footnotes

Does a week sound like a long time? It really isn’t, particularly when you’re looking at
processes in which management and workers occupy different worlds. Management will
give you one view of how things operate, but when you get down on the floor, you’ll find
a very different reality—one that will take time to assimilate.

https://www.wired.com/1999/01/eno/

https://www.psychologytoday.com/us/blog/your-brain-work/201209/stop-trying-
solve-problems

https://agilemanifesto.org

For more on just how bad that approach can be, see The Tyranny of Metrics [Mul18].



Chapter 9

Pragmatic Projects
 

As your project gets under way, we need to move away from
issues of individual philosophy and coding to talk about larger,
project-sized issues. We aren’t going to go into specifics of
project management, but we will talk about a handful of critical
areas that can make or break any project.

As soon as you have more than one person working on a project,
you need to establish some ground rules and delegate parts of
the project accordingly. In Topic 49, Pragmatic Teams, we’ll
show how to do this while honoring the Pragmatic philosophy.

The purpose of a software development method is to help
people work together. Are you and your team doing what works
well for you, or are you only investing in the trivial surface
artifacts, and not getting the real benefits you deserve? We’ll see
why Topic 50, Coconuts Don’t Cut It and offer the true secret to
success.

And of course none of that matters if you can’t deliver software
consistently and reliably. That’s the basis of the magic trio of
version control, testing, and automation: the Topic 51,
Pragmatic Starter Kit.

Ultimately, though, success is in the eye of the beholder—the
sponsor of the project. The perception of success is what counts,
and in Topic 52, Delight Your Users we’ll show you how to
delight every project’s sponsor.

The last tip in the book is a direct consequence of all the rest. In
Topic 53, Pride and Prejudice, we ask you to sign your work,
and to take pride in what you do.



At Group L, Stoffel
oversees six first-rate
programmers, a
managerial challenge
roughly comparable to
herding cats.

The Washington Post
Magazine, June 9, 1985

Topic 49 Pragmatic Teams

Even in 1985, the joke about
herding cats was getting old. By
the time of the first edition at the
turn of the century, it was
positively ancient. Yet it persists,
because it has a ring of truth to it.
Programmers are a bit like cats:
intelligent, strong willed,
opinionated, independent, and
often worshiped by the net.

So far in this book we’ve looked at
pragmatic techniques that help an

individual be a better programmer. Can these methods work for
teams as well, even for teams of strong-willed, independent
people? The answer is a resounding “yes!’’ There are advantages
to being a pragmatic individual, but these advantages are
multiplied manyfold if the individual is working on a pragmatic
team.

A team, in our view, is a small, mostly stable entity of its own.
Fifty people aren’t a team, they’re a horde.  Teams where
members are constantly being pulled onto other assignments
and no one knows each other aren’t a team either, they are
merely strangers temporarily sharing a bus stop in the rain.

A pragmatic team is small, under 10-12 or so members.

[75]

Members come and go rarely. Everyone knows everyone well,
trusts each other, and depends on each other.

Tip 84 Maintain Small, Stable Teams

In this section we’ll look briefly at how pragmatic techniques
can be applied to teams as a whole. These notes are only a start.
Once you’ve got a group of pragmatic developers working in an
enabling environment, they’ll quickly develop and refine their
own team dynamics that work for them.

Let’s recast some of the previous sections in terms of teams.

NO BROKEN WINDOWS

Quality is a team issue. The most diligent developer placed on a
team that just doesn’t care will find it difficult to maintain the
enthusiasm needed to fix niggling problems. The problem is
further exacerbated if the team actively discourages the
developer from spending time on these fixes.

Teams as a whole should not tolerate broken windows—those
small imperfections that no one fixes. The team must take
responsibility for the quality of the product, supporting
developers who understand the no broken windows philosophy
we describe in Topic 3, Software Entropy, and encouraging
those who haven’t yet discovered it.

Some team methodologies have a “quality officer”—someone to
whom the team delegates the responsibility for the quality of the
deliverable. This is clearly ridiculous: quality can come only
from the individual contributions of all team members. Quality
is built in, not bolted on.



BOILED FROGS

Remember the apocryphal frog in the pan of water, back in
Topic 4, Stone Soup and Boiled Frogs? It doesn’t notice the
gradual change in its environment, and ends up cooked. The
same can happen to individuals who aren’t vigilant. It can be
difficult to keep an eye on your overall environment in the heat
of project development.

It’s even easier for teams as a whole to get boiled. People
assume that someone else is handling an issue, or that the team
leader must have OK’d a change that your user is requesting.
Even the best-intentioned teams can be oblivious to significant
changes in their projects.

Fight this. Encourage everyone to actively monitor the
environment for changes. Stay awake and aware for increased
scope, decreased time scales, additional features, new
environments—anything that wasn’t in the original
understanding. Keep metrics on new requirements.  The team
needn’t reject changes out of hand—you simply need to be
aware that they’re happening. Otherwise, it’ll be you in the hot
water.

SCHEDULE YOUR KNOWLEDGE PORTFOLIO
In Topic 6, Your Knowledge Portfolio we looked at ways you
should invest in your personal Knowledge Portfolio on your own
time. Teams that want to succeed need to consider their
knowledge and skill investments as well.

If your team is serious about improvement and innovation, you
need to schedule it. Trying to get things done “whenever there’s
a free moment” means they will never happen. Whatever sort of

[76]

backlog or task list or flow you’re working with, don’t reserve it
for only feature development. The team works on more than
just new features. Some possible examples include:

Old Systems Maintenance
While we love working on the shiny new system, there’s
likely maintenance work that needs to be done on the old
system. We’ve met teams who try and shove this work in
the corner. If the team is charged with doing these tasks,
then do them—for real.

Process Reflection and Refinement
Continuous improvement can only happen when you take
the time to look around, figure out what’s working and
not, and then make changes (see Topic 48, The Essence
of Agility). Too many teams are so busy bailing out water
that they don’t have time to fix the leak. Schedule it. Fix
it.

New tech experiments
Don’t adopt new tech, frameworks, or libraries just
because “everyone is doing it,” or based on something
you saw at a conference or read online. Deliberately vet
candidate technologies with prototypes. Put tasks on the
schedule to try the new things and analyze results.

Learning and skill improvements
Personal learning and improvements are a great start,
but many skills are more effective when spread team-
wide. Plan to do it, whether it’s the informal brown-bag
lunch or more formal training sessions.



Tip 85 Schedule It to Make It Happen

COMMUNICATE TEAM PRESENCE

It’s obvious that developers in a team must talk to each other.
We gave some suggestions to facilitate this in Topic 7,
Communicate!. However, it’s easy to forget that the team itself
has a presence within the organization. The team as an entity
needs to communicate clearly with the rest of the world.

To outsiders, the worst project teams are those that appear
sullen and reticent. They hold meetings with no structure,
where no one wants to talk. Their emails and project documents
are a mess: no two look the same, and each uses different
terminology.

Great project teams have a distinct personality. People look
forward to meetings with them, because they know that they’ll
see a well-prepared performance that makes everyone feel good.
The documentation they produce is crisp, accurate, and
consistent. The team speaks with one voice.  They may even
have a sense of humor.

There is a simple marketing trick that helps teams communicate
as one: generate a brand. When you start a project, come up
with a name for it, ideally something off-the-wall. (In the past,
we’ve named projects after things such as killer parrots that
prey on sheep, optical illusions, gerbils, cartoon characters, and
mythical cities.) Spend 30 minutes coming up with a zany logo,
and use it. Use your team’s name liberally when talking with
people. It sounds silly, but it gives your team an identity to build
on, and the world something memorable to associate with your
work.

[77]

DON’T REPEAT YOURSELVES

In Topic 9, DRY—The Evils of Duplication, we talked about the
difficulties of eliminating duplicated work between members of
a team. This duplication leads to wasted effort, and can result in
a maintenance nightmare. “Stovepipe” or “siloed” systems are
common in these teams, with little sharing and a lot of
duplicated functionality.

Good communication is key to avoiding these problems. And by
“good” we mean instant and frictionless.

You should be able to ask a question of team members and get a
more-or-less instant reply. If the team is co-located, this might
be as simple as poking your head over the cube wall or down the
hall. For remote teams, you may have to rely on a messaging
app or other electronic means.

If you have to wait a week for the team meeting to ask your
question or share your status, that’s an awful lot of friction.
Frictionless means it’s easy and low-ceremony to ask questions,
share your progress, your problems, your insights and
learnings, and to stay aware of what your teammates are doing.

Maintain awareness to stay DRY.

TEAM TRACER BULLETS

A project team has to accomplish many different tasks in
different areas of the project, touching a lot of different
technologies. Understanding requirements, designing
architecture, coding for frontend and server, testing, all have to
happen. But it’s a common misconception that these activities
and tasks can happen separately, in isolation. They can’t.

[78]



Some methodologies advocate all sort of different roles and
titles within the team, or create separate specialized teams
entirely. But the problem with that approach is that it
introduces gates and handoffs. Now instead of a smooth flow
from the team to deployment, you have artificial gates where the
work stops. Handoffs that have to wait to be accepted.
Approvals. Paperwork. The Lean folks call this waste, and strive
to actively eliminate it.

All of these different roles and activities are actually different
views of the same problem, and artificially separating them can
cause a boatload of trouble. For example, programmers who are
two or three levels removed from the actual users of their code
are unlikely to be aware of the context in which their work is
used. They will not be able to make informed decisions.

With Topic 12, Tracer Bullets, we recommend developing
individual features, however small and limited initially, that go
end-to-end through the entire system. That means that you
need all the skills to do that within the team: frontend, UI/UX,
server, DBA, QA, etc., all comfortable and accustomed to
working with each other. With a tracer bullet approach, you can
implement very small bits of functionality very quickly, and get
immediate feedback on how well your team communicates and
delivers. That creates an environment where you can make
changes and tune your team and process quickly and easily.

Tip 86 Organize Fully Functional Teams

Build teams so you can build code end-to-end, incrementally
and iteratively.

AUTOMATION

A great way to ensure both consistency and accuracy is to
automate everything the team does. Why struggle with code
formatting standards when your editor or IDE can do it for you
automatically? Why do manual testing when the continuous
build can run tests automatically? Why deploy by hand when
automation can do it the same way every time, repeatably and
reliably?

Automation is an essential component of every project team.
Make sure the team has skills at tool building to construct and
deploy the tools that automate the project development and
production deployment.

KNOW WHEN TO STOP ADDING PAINT
Remember that teams are made up of individuals. Give each
member the ability to shine in their own way. Give them just
enough structure to support them and to ensure that the project
delivers value. Then, like the painter in Topic 5, Good-Enough
Software, resist the temptation to add more paint.

RELATED SECTIONS INCLUDE

Topic 2, The Cat Ate My Source Code

Topic 7, Communicate!

Topic 12, Tracer Bullets

Topic 19, Version Control

Topic 50, Coconuts Don’t Cut It

Topic 51, Pragmatic Starter Kit

CHALLENGES



Look around for successful teams outside the area of software
development. What makes them successful? Do they use any of the
processes discussed in this section?

Next time you start a project, try convincing people to brand it. Give
your organization time to become used to the idea, and then do a
quick audit to see what difference it made, both within the team
and externally.

You were probably once given problems such as “If it takes 4
workers 6 hours to dig a ditch, how long would it take 8 workers?”
In real life, however, what factors affect the answer if the workers
were writing code instead? In how many scenarios is the time
actually reduced?

Read The Mythical Man Month [Bro96] by Frederick Brooks. For
extra credit, buy two copies so you can read it twice as fast.

Topic 50 Coconuts Don’t Cut It

The native islanders had never seen an airplane before, or met
people such as these strangers. In return for use of their land,
the strangers provided mechanical birds that flew in and out all
day long on a “runway,” bringing incredible material wealth to
their island home. The strangers mentioned something about
war and fighting. One day it was over and they all left, taking
their strange riches with them.

The islanders were desperate to restore their good fortunes, and
re-built a facsimile of the airport, control tower, and equipment
using local materials: vines, coconut shells, palm fronds, and
such. But for some reason, even though they had everything in
place, the planes didn’t come. They had imitated the form, but
not the content. Anthropologists call this a cargo cult.

All too often, we are the islanders.

It’s easy and tempting to fall into the cargo cult trap: by
investing in and building up the easily-visible artifacts, you
hope to attract the underlying, working magic. But as with the
original cargo cults of Melanesia,  a fake airport made out of
coconut shells is no substitute for the real thing.

For example, we have personally seen teams that claim to be
using Scrum. But, upon closer examination, it turned out they
were doing a daily stand up meeting once a week, with four-
week iterations that often turned into six- or eight-week

[79]



iterations. They felt that this was okay because they were using
a popular “agile” scheduling tool. They were only investing in
the superficial artifacts—and even then, often in name only, as if
“stand up” or “iteration” were some sort of incantation for the
superstitious. Unsurprisingly, they, too, failed to attract the real
magic.

CONTEXT MATTERS

Have you or your team fallen in this trap? Ask yourself, why are
you even using that particular development method? Or that
framework? Or that testing technique? Is it actually well-suited
for the job at hand? Does it work well for you? Or was it adopted
just because it was being used by the latest internet-fueled
success story?

There’s a current trend to adopt the policies and processes of
successful companies such as Spotify, Netflix, Stripe, GitLab,
and others. Each have their own unique take on software
development and management. But consider the context: are
you in the same market, with the same constraints and
opportunities, similar expertise and organization size, similar
management, and similar culture? Similar user base and
requirements?

Don’t fall for it. Particular artifacts, superficial structures,
policies, processes, and methods are not enough.

Tip 87 Do What Works, Not What’s Fashionable

How do you know “what works”? You rely on that most
fundamental of Pragmatic techniques:

Try it.

Pilot the idea with a small team or set of teams. Keep the good
bits that seem to work well, and discard anything else as waste
or overhead. No one will downgrade your organization because
it operates differently from Spotify or Netflix, because even they
didn’t follow their current processes while they were growing.
And years from now, as those companies mature and pivot and
continue to thrive, they’ll be doing something different yet
again.

That’s the actual secret to their success.

ONE SIZE FITS NO ONE WELL

The purpose of a software development methodology is to help
people work together. As we discuss in Topic 48, The Essence of
Agility, there is no single plan you can follow when you develop
software, especially not a plan that someone else came up with
at another company.

Many certification programs are actually even worse than that:
they are predicated on the student being able to memorize and
follow the rules. But that’s not what you want. You need the
ability to see beyond the existing rules and exploit possibilities
for advantage. That’s a very different mindset from “but
Scrum/Lean/Kanban/XP/agile does it this way…” and so on.

Instead, you want to take the best pieces from any particular
methodology and adapt them for use. No one size fits all, and
current methods are far from complete, so you’ll need to look at
more than just one popular method.

For example, Scrum defines some project management



practices, but Scrum by itself doesn’t provide enough guidance
at the technical level for teams or at the portfolio/governance
level for leadership. So where do you start?

Be Like Them!

We frequently hear software development leaders tell their staff, “We should operate
like Netflix” (or one of these other leading companies). Of course you could do that.

First, get yourself a few hundred thousand servers and tens of millions of users...

THE REAL GOAL
The goal of course isn’t to “do Scrum,” “do agile,” “do Lean,” or
what-have-you. The goal is to be in a position to deliver working
software that gives the users some new capability at a moment’s
notice. Not weeks, months, or years from now, but now. For
many teams and organizations, continuous delivery feels like a
lofty, unattainable goal, especially if you’re saddled with a
process that restricts delivery to months, or even weeks. But as
with any goal, the key is to keep aiming in the right direction.

images/delivery_times.png

If you’re delivering in years, try and shorten the cycle to
months. From months, cut it down to weeks. From a four-week
sprint, try two. From a two week sprint, try one. Then daily.
Then, finally, on demand. Note that being able to deliver on
demand does not mean you are forced to deliver every minute of
every day. You deliver when the users need it, when it makes
business sense to do so.

Tip 88 Deliver When Users Need It

In order to move to this style of continuous development, you
need a rock-solid infrastructure, which we discuss in the next
topic, Topic 51, Pragmatic Starter Kit. You do development in
the main trunk of your version control system, not in branches,
and use techniques such as feature switches to roll out test
features to users selectively.

Once your infrastructure is in order, you need to decide how to



organize the work. Beginners might want to start with Scrum for
project management, plus the technical practices from eXtreme
Programming (XP). More disciplined and experienced teams
might look to Kanban and Lean techniques, both for the team
and perhaps for larger governance issues.

But don’t take our word for it, investigate and try these
approaches for yourself. Be careful, though, in overdoing it.
Overly investing in any particular methodology can leave you
blind to alternatives. You get used to it. Soon it becomes hard to
see any other way. You’ve become calcified, and now you can’t
adapt quickly anymore.

Might as well be using coconuts.

RELATED SECTIONS INCLUDE

Topic 12, Tracer Bullets

Topic 27, Don’t Outrun Your Headlights

Topic 48, The Essence of Agility

Topic 49, Pragmatic Teams

Topic 51, Pragmatic Starter Kit

Civilization advances
by extending the
number of important
operations we can
perform without
thinking.

Alfred North Whitehead

Topic 51 Pragmatic Starter Kit

Back when cars were a novelty, the
instructions for starting a Model-T
Ford were more than two pages
long. With modern cars, you just
push a button—the starting
procedure is automatic and
foolproof. A person following a list
of instructions might flood the
engine, but the automatic starter
won’t.

Although software development is
still an industry at the Model-T stage, we can’t afford to go
through two pages of instructions again and again for some
common operation. Whether it is the build and release
procedure, testing, project paperwork, or any other recurring
task on the project, it has to be automatic and repeatable on any
capable machine.

In addition, we want to ensure consistency and repeatability on
the project. Manual procedures leave consistency up to chance;
repeatability isn’t guaranteed, especially if aspects of the
procedure are open to interpretation by different people.

After we wrote the first edition of The Pragmatic Programmer,
we wanted to create more books to help teams develop software.
We figured we should start at the beginning: what are the most



basic, most important elements that every team needs
regardless of methodology, language, or technology stack. And
so the idea of the Pragmatic Starter Kit was born, covering
these three critical and interrelated topics:

Version Control

Regression Testing

Full Automation

These are the three legs that support every project. Here’s how.

DRIVE WITH VERSION CONTROL

As we said in Topic 19, Version Control, you want to keep
everything needed to build your project under version control.
That idea becomes even more important in the context of the
project itself.

First, it allows build machines to be ephemeral. Instead of one
hallowed, creaky machine in the corner of the office that
everyone is afraid to touch,  build machines and/or clusters
are created on demand as spot instances in the cloud.
Deployment configuration is under version control as well, so
releasing to production can be handled automatically.

And that’s the important part: at the project level, version
control drives the build and release process.

Tip 89
Use Version Control to Drive Builds, Tests, and 
Releases

That is, build, test, and deployment are triggered via commits or

[80]

pushes to version control, and built in a container in the cloud.
Release to staging or production is specified by using a tag in
your version control system. Releases then become a much
more low-ceremony part of every day life—true continuous
delivery, not tied to any one build machine or developer’s
machine.

RUTHLESS AND CONTINUOUS TESTING

Many developers test gently, subconsciously knowing where the
code will break and avoiding the weak spots. Pragmatic
Programmers are different. We are driven to find our bugs now,
so we don’t have to endure the shame of others finding our bugs
later.

Finding bugs is somewhat like fishing with a net. We use fine,
small nets (unit tests) to catch the minnows, and big, coarse
nets (integration tests) to catch the killer sharks. Sometimes the
fish manage to escape, so we patch any holes that we find, in
hopes of catching more and more slippery defects that are
swimming about in our project pool.

Tip 90 Test Early, Test Often, Test Automatically

We want to start testing as soon as we have code. Those tiny
minnows have a nasty habit of becoming giant, man-eating
sharks pretty fast, and catching a shark is quite a bit harder. So
we write unit tests. A lot of unit tests.

In fact, a good project may well have more test code than
production code. The time it takes to produce this test code is
worth the effort. It ends up being much cheaper in the long run,
and you actually stand a chance of producing a product with



close to zero defects.

Additionally, knowing that you’ve passed the test gives you a
high degree of confidence that a piece of code is “done.’’

Tip 91 Coding Ain’t Done ’Til All the Tests Run

The automatic build runs all available tests. It’s important to
aim to “test for real,” in other words, the test environment
should match the production environment closely. Any gaps are
where bugs breed.

The build may cover several major types of software testing:
unit testing; integration testing; validation and verification; and
performance testing.

This list is by no means complete, and some specialized projects
will require various other types of testing as well. But it gives us
a good starting point.

Unit Testing

A unit test is code that exercises a module. We covered this in
Topic 41, Test to Code. Unit testing is the foundation of all the
other forms of testing that we’ll discuss in this section. If the
parts don’t work by themselves, they probably won’t work well
together. All of the modules you are using must pass their own
unit tests before you can proceed.

Once all of the pertinent modules have passed their individual
tests, you’re ready for the next stage. You need to test how all
the modules use and interact with each other throughout the
system.

Integration Testing

Integration testing shows that the major subsystems that make
up the project work and play well with each other. With good
contracts in place and well tested, any integration issues can be
detected easily. Otherwise, integration becomes a fertile
breeding ground for bugs. In fact, it is often the single largest
source of bugs in the system.

Integration testing is really just an extension of the unit testing
we’ve described—you’re just testing how entire subsystems
honor their contracts.

Validation and Verification

As soon as you have an executable user interface or prototype,
you need to answer an all-important question: the users told
you what they wanted, but is it what they need?

Does it meet the functional requirements of the system? This,
too, needs to be tested. A bug-free system that answers the
wrong question isn’t very useful. Be conscious of end-user
access patterns and how they differ from developer test data
(for an example, see the story about brush strokes here).

Performance Testing

Performance or stress testing may be important aspects of the
project as well.

Ask yourself if the software meets the performance
requirements under real-world conditions—with the expected
number of users, or connections, or transactions per second. Is
it scalable?

For some applications, you may need specialized testing



hardware or software to simulate the load realistically.

Testing the Tests

Because we can’t write perfect software, it follows that we can’t
write perfect test software either. We need to test the tests.

Think of our set of test suites as an elaborate security system,
designed to sound the alarm when a bug shows up. How better
to test a security system than to try to break in?

After you have written a test to detect a particular bug, cause
the bug deliberately and make sure the test complains. This
ensures that the test will catch the bug if it happens for real.

Tip 92 Use Saboteurs to Test Your Testing

If you are really serious about testing, take a separate branch of
the source tree, introduce bugs on purpose, and verify that the
tests will catch them. At a higher level, you can use something
like Netflix’s Chaos Monkey  to disrupt (i.e., “kill”) services
and test your application’s resilience.

When writing tests, make sure that alarms sound when they
should.

Testing Thoroughly

Once you are confident that your tests are correct, and are
finding bugs you create, how do you know if you have tested the
code base thoroughly enough?

The short answer is “you don’t,’’ and you never will. You might
look to try coverage analysis tools that watch your code during

[81]

testing and keep track of which lines of code have been executed
and which haven’t. These tools help give you a general feel for
how comprehensive your testing is, but don’t expect to see 100%
coverage.

Even if you do happen to hit every line of code, that’s not the
whole picture. What is important is the number of states that
your program may have. States are not equivalent to lines of
code. For instance, suppose you have a function that takes two
integers, each of which can be a number from 0 to 999:

 int test(int a, int b) {
   return a / (a + b);
 }

In theory, this three-line function has 1,000,000 logical states,
999,999 of which will work correctly and one that will not
(when a + b equals zero). Simply knowing that you executed this
line of code doesn’t tell you that—you would need to identify all
possible states of the program. Unfortunately, in general this is
a really hard problem. Hard as in, “The sun will be a cold hard
lump before you can solve it.”

Tip 93 Test State Coverage, Not Code Coverage

Property-Based Testing

A great way to explore how your code handles unexpected states
is to have a computer generate those states.

Use property-based testing techniques to generate test data
according to the contracts and invariants of the code under test.
We cover this topic in detail in Topic 42, Property-Based
Testing.

[82]



TIGHTENING THE NET

Finally, we’d like to reveal the single most important concept in
testing. It is an obvious one, and virtually every textbook says to
do it this way. But for some reason, most projects still do not.

If a bug slips through the net of existing tests, you need to add a
new test to trap it next time.

Tip 94 Find Bugs Once

Once a human tester finds a bug, it should be the last time a
human tester finds that bug. The automated tests should be
modified to check for that particular bug from then on, every
time, with no exceptions, no matter how trivial, and no matter
how much the developer complains and says, “Oh, that will
never happen again.”

Because it will happen again. And we just don’t have the time to
go chasing after bugs that the automated tests could have found
for us. We have to spend our time writing new code—and new
bugs.

FULL AUTOMATION
As we said at the beginning of this section, modern
development relies on scripted, automatic procedures. Whether
you use something as simple as shell scripts with rsync and ssh,
or full-featured solutions such as Ansible, Puppet, Chef, or Salt,
just don’t rely on any manual intervention.

Once upon a time, we were at a client site where all the
developers were using the same IDE. Their system
administrator gave each developer a set of instructions on

installing add-on packages to the IDE. These instructions filled
many pages—pages full of click here, scroll there, drag this,
double-click that, and do it again.

Not surprisingly, every developer’s machine was loaded slightly
differently. Subtle differences in the application’s behavior
occurred when different developers ran the same code. Bugs
would appear on one machine but not on others. Tracking down
version differences of any one component usually revealed a
surprise.

Tip 95 Don’t Use Manual Procedures

People just aren’t as repeatable as computers are. Nor should
we expect them to be. A shell script or program will execute the
same instructions, in the same order, time after time. It is under
version control itself, so you can examine changes to the
build/release procedures over time as well (“but it used to
work…”).

Everything depends on automation. You can’t build the project
on an anonymous cloud server unless the build is fully
automatic. You can’t deploy automatically if there are manual
steps involved. And once you introduce manual steps (“just for
this one part…”) you’ve broken a very large window.

With these three legs of version control, ruthless testing, and
full automation, your project will have the firm foundation you
need so you can concentrate on the hard part: delighting users.

RELATED SECTIONS INCLUDE

Topic 11, Reversibility

[83]



Topic 12, Tracer Bullets

Topic 17, Shell Games

Topic 19, Version Control

Topic 41, Test to Code

Topic 49, Pragmatic Teams

Topic 50, Coconuts Don’t Cut It

CHALLENGES

Are your nightly or continuous builds automatic, but deploying to
production isn’t? Why? What’s special about that server?

Can you automatically test your project completely? Many teams
are forced to answer “no.” Why? Is it too hard to define the
acceptable results? Won’t this make it hard to prove to the sponsors
that the project is “done”?

Is it too hard to test the application logic independent of the GUI?
What does this say about the GUI? About coupling?

When you enchant
people, your goal is not
to make money
from them or to get
them to do what you
want, but 
to fill them with great
delight.

Guy Kawasaki

Topic 52 Delight Your Users

Our goal as developers is to delight
users. That’s why we’re here. Not
to mine them for their data, or
count their eyeballs or empty their
wallets. Nefarious goals aside,
even delivering working software
in a timely manner isn’t enough.
That alone won’t delight them.

Your users are not particularly
motivated by code. Instead, they
have a business problem that
needs solving within the context of
their objectives and budget. Their

belief is that by working with your team they’ll be able to do
this.

Their expectations are not software related. They aren’t even
implicit in any specification they give you (because that
specification will be incomplete until your team has iterated
through it with them several times).

How do you unearth their expectations, then? Ask a simple
question:

How will you know that we’ve all been successful a month (or a
year, or whatever) after this project is done?



You may well be surprised by the answer. A project to improve
product recommendations might actually be judged in terms of
customer retention; a project to consolidate two databases
might be judged in terms of data quality, or it might be about
cost savings. But it’s these expectations of business value that
really count—not just the software project itself. The software is
only a means to these ends.

And now that you’ve surfaced some of the underlying
expectations of value behind the project, you can start thinking
about how you can deliver against them:

Make sure everyone on the team is totally clear about these
expectations.

When making decisions, think about which path forward moves
closer to those expectations.

Critically analyze the user requirements in light of the expectations.
On many projects we’ve discovered that the stated “requirement”
was in fact just a guess at what could be done by technology: it was
actually an amateur implementation plan dressed up as a
requirements document. Don’t be afraid to make suggestions that
change the requirement if you can demonstrate that they will move
the project closer to the objective.

Continue to think about these expectations as you progress through
the project.

We’ve found that as our knowledge of the domain increases,
we’re better able to make suggestions on other things that could
be done to address the underlying business issues. We strongly
believe that developers, who are exposed to many different
aspects of an organization, can often see ways of weaving
different parts of the business together that aren’t always
obvious to individual departments.

Tip 96 Delight Users, Don’t Just Deliver Code

If you want to delight your client, forge a relationship with them
where you can actively help solve their problems. Even though
your title might be some variation of “Software Developer” or
“Software Engineer,” in truth it should be “Problem Solver.”
That’s what we do, and that’s the essence of a Pragmatic
Programmer.

We solve problems.

RELATED SECTIONS INCLUDE

Topic 12, Tracer Bullets

Topic 13, Prototypes and Post-it Notes

Topic 45, The Requirements Pit



You have delighted us
long enough.

Jane Austen, Pride and
Prejudice

Topic 53 Pride and Prejudice

Pragmatic Programmers don’t
shirk from responsibility. Instead,
we rejoice in accepting challenges
and in making our expertise well
known. If we are responsible for a
design, or a piece of code, we do a
job we can be proud of.

Tip 97 Sign Your Work

Artisans of an earlier age were proud to sign their work. You
should be, too.

Project teams are still made up of people, however, and this rule
can cause trouble. On some projects, the idea of code ownership
can cause cooperation problems. People may become territorial,
or unwilling to work on common foundation elements. The
project may end up like a bunch of insular little fiefdoms. You
become prejudiced in favor of your code and against your
coworkers.

That’s not what we want. You shouldn’t jealously defend your
code against interlopers; by the same token, you should treat
other people’s code with respect. The Golden Rule (“Do unto
others as you would have them do unto you’’) and a foundation
of mutual respect among the developers is critical to make this
tip work.

Anonymity, especially on large projects, can provide a breeding
ground for sloppiness, mistakes, sloth, and bad code. It
becomes too easy to see yourself as just a cog in the wheel,
producing lame excuses in endless status reports instead of
good code.

While code must be owned, it doesn’t have to be owned by an
individual. In fact, Kent Beck’s eXtreme Programming
recommends communal ownership of code (but this also
requires additional practices, such as pair programming, to
guard against the dangers of anonymity).

We want to see pride of ownership. “I wrote this, and I stand
behind my work.” Your signature should come to be recognized
as an indicator of quality. People should see your name on a
piece of code and expect it to be solid, well written, tested, and
documented. A really professional job. Written by a
professional.

A Pragmatic Programmer.

 

Thank you.

images/dave_and_andy.png

[84]



In the long run, we
shape our lives, and we
shape ourselves. The
process never ends
until we die. And the
choices we make are
ultimately our own
responsibility.

Eleanor Roosevelt

Copyright © 2020 Pearson Education, Inc.

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Footnotes

As team size grows, communication paths grow at the rate of , where  is the
number of team members. On larger teams, communication begins to break down and
becomes ineffective.

A burnup chart is better for this than the more usual burndown chart. With a burnup
chart, you can clearly see how the additional features move the goalposts.

The team speaks with one voice—externally. Internally, we strongly encourage lively,
robust debate. Good developers tend to be passionate about their work.

Andy has met teams who conduct their daily Scrum standups on Fridays.

See https://en.wikipedia.org/wiki/Cargo_cult.

We’ve seen this first-hand more times than you’d think.

https://netflix.github.io/chaosmonkey

For an interesting study of the correlation between test coverage and defects, see
Mythical Unit Test Coverage [ADSS18].

Always remember Topic 3, Software Entropy. Always.

http://www.extremeprogramming.org



Chapter 10

Postface
 

In the twenty years leading up to the first edition, we were part
of the evolution of the computer from a peripheral curiosity to a
modern imperative for businesses. In the twenty years since
then, software has grown beyond mere business machines and
has truly taken over the world. But what does that really mean
for us?

In The Mythical Man-Month: Essays on Software
Engineering [Bro96], Fred Brooks said “The programmer, like
the poet, works only slightly removed from pure thought-stuff.
He builds his castles in the air, from air, creating by exertion of
the imagination.” We start with a blank page, and we can create
pretty much anything we can imagine. And the things we create
can change the world.

From Twitter helping people plan revolutions, to the processor
in your car working to stop you skidding, to the smartphone
which means we no longer have to remember pesky daily
details, our programs are everywhere. Our imagination is
everywhere.

We developers are incredibly privileged. We are truly building
the future. It’s an extraordinary amount of power. And with that

power comes an extraordinary responsibility.

How often do we stop to think about that? How often do we
discuss, both among ourselves and with a more general
audience, what this means?

Embedded devices use an order of magnitude more computers
than those used in laptops, desktops, and data centers. These
embedded computers often control life-critical systems, from
power plants to cars to medical equipment. Even a simple
central heating control system or home appliance can kill
someone if it is poorly designed or implemented. When you
develop for these devices, you take on a staggering
responsibility.

Many nonembedded systems can also do both great good and
great harm. Social media can promote peaceful revolution or
foment ugly hate. Big data can make shopping easier, and it can
destroy any vestige of privacy you might think you have.
Banking systems make loan decisions that change people’s lives.
And just about any system can be used to snoop on its users.

We’ve seen hints of the possibilities of a utopian future, and
examples of unintended consequences leading to nightmare
dystopias. The difference between the two outcomes might be
more subtle than you think. And it’s all in your hands.



The Moral Compass
The price of this unexpected power is vigilance. Our actions
directly affect people. No longer the hobby program on the 8-bit
CPU in the garage, the isolated batch business process on the
mainframe in the data center, or even just the desktop PC; our
software weaves the very fabric of daily modern life.

We have a duty to ask ourselves two questions about every piece
of code we deliver:

1. Have I protected the user?
2. Would I use this myself?

First, you should ask “Have I done my best to protect the users
of this code from harm?” Have I made provisions to apply
ongoing security patches to that simple baby monitor? Have I
ensured that however the automatic central heating thermostat
fails the customer will still have manual control? Am I storing
only the data I need, and encrypting anything personal?

No one is perfect; everyone misses things now and then. But if
you can’t truthfully say that you tried to list all the
consequences, and made sure to protect the users from them,
then you bear some responsibility when things go bad.

Tip 98 First, Do No Harm

Second, there’s a judgment related to the Golden Rule: would I
be happy to be a user of this software? Do I want my details

shared? Do I want my movements to be given to retail outlets?
Would I be happy to be driven by this autonomous vehicle? Am
I comfortable doing this?

Some inventive ideas begin to skirt the bounds of ethical
behavior, and if you’re involved in that project, you are just as
responsible as the sponsors. No matter how many degrees of
separation you might rationalize, one rule remains true:

Tip 99 Don’t Enable Scumbags



Imagine the Future you Want
It’s up to you. It’s your imagination, your hopes, your concerns
that provide the pure thought-stuff that builds the next twenty
years and beyond.

You are building the future, for yourselves and for your
descendants. Your duty is to make it a future that we’d all want
to inhabit. Recognize when you’re doing something against this
ideal, and have the courage to say “no!” Envision the future we
could have, and have the courage to create it. Build castles in
the air every day.

We all have an amazing life.

Tip 100

It’s Your Life. 
Share it. Celebrate it. Build it.
 AND HAVE FUN!

Copyright © 2020 Pearson Education, Inc.

[ADSS18
]

[And10]

[Arm07]

[BR89]

[Bro96]

[CN91]

[Con68]

[de 98]

[DL13]

[Fow00]

Appendix 1

Bibliography
 

Vard Antinyan, Jesper Derehag, Anna Sandberg, and
Miroslaw Staron. Mythical Unit Test Coverage. IEEE
Software. 35:73-79, 2018.

Jackie Andrade. What does doodling do? Applied
Cognitive Psychology. 24(1):100-106, 2010, January.

Joe Armstrong. Programming Erlang: Software for a
Concurrent World. The Pragmatic Bookshelf, Raleigh,
NC, 2007.

Albert J. Bernstein and Sydney Craft Rozen. Dinosaur
Brains: Dealing with All Those Impossible People at
Work. John Wiley & Sons, New York, NY, 1989.

Frederick P. Brooks, Jr. The Mythical Man-Month:
Essays on Software Engineering. Addison-Wesley,
Reading, MA, Anniversary, 1996.

Brad J. Cox and Andrew J. Novobilski. Object-Oriented
Programming: An Evolutionary Approach. Addison-
Wesley, Reading, MA, Second, 1991.

Melvin E. Conway. How do Committees Invent?
Datamation. 14(5):28-31, 1968, April.

Gavin de Becker. The Gift of Fear: And Other Survival
Signals That Protect Us from Violence. Dell
Publishing, New York City, 1998.

Tom DeMacro and Tim Lister. Peopleware: Productive
Projects and Teams. Addison-Wesley, Boston, MA, Third,
2013.

Martin Fowler. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. Addison-



[Fow04]

[Fow19]

[GHJV9
5]

[Hol92]

[Hun08]

[Joi94]

[Knu11]

[Knu98]

[Knu98a
]

[Knu98b
]

[KP99]

[Mey97]

[Mul18]

Wesley, Boston, MA, Second, 2000.

Martin Fowler. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. Addison-
Wesley, Boston, MA, Third, 2004.

Martin Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston, MA, Second,
2019.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

Michael Holt. Math Puzzles & Games. Dorset House,
New York, NY, 1992.

Andy Hunt. Pragmatic Thinking and Learning:
Refactor Your Wetware. The Pragmatic Bookshelf,
Raleigh, NC, 2008.

T.E. Joiner. Contagious depression: Existence, specificity to
depressed symptoms, and the role of reassurance seeking.
Journal of Personality and Social Psychology.
67(2):287--296, 1994, August.

Donald E. Knuth. The Art of Computer Programming,
Volume 4A: Combinatorial Algorithms, Part 1.
Addison-Wesley, Boston, MA, 2011.

Donald E. Knuth. The Art of Computer Programming,
Volume 1: Fundamental Algorithms. Addison-Wesley,
Reading, MA, Third, 1998.

Donald E. Knuth. The Art of Computer Programming,
Volume 2: Seminumerical Algorithms. Addison-
Wesley, Reading, MA, Third, 1998.

Donald E. Knuth. The Art of Computer Programming,
Volume 3: Sorting and Searching. Addison-Wesley,
Reading, MA, Second, 1998.

Brian W. Kernighan and Rob Pike. The Practice of
Programming. Addison-Wesley, Reading, MA, 1999.

Bertrand Meyer. Object-Oriented Software
Construction. Prentice Hall, Upper Saddle River, NJ,
Second, 1997.

Jerry Z. Muller. The Tyranny of Metrics. Princeton
University Press, Princeton NJ, 2018.

[SF13]

[Str35]

[SW11]

[Tal10]

[WH82]

[YC79]

[You95]

I would rather have
questions that can’t be
answered than
answers that can’t be
questioned.

Richard Feynman

Robert Sedgewick and Phillipe Flajolet. An Introduction
to the Analysis of Algorithms. Addison-Wesley, Boston,
MA, Second, 2013.

James Ridley Stroop. Studies of Interference in Serial Verbal
Reactions. Journal of Experimental Psychology.
18:643--662, 1935.

Robert Sedgewick and Kevin Wayne. Algorithms. Addison-
Wesley, Boston, MA, Fourth, 2011.

Nassim Nicholas Taleb. The Black Swan: Second
Edition: The Impact of the Highly Improbable.
Random House, New York, NY, Second, 2010.

James Q. Wilson and George Helling. The police and
neighborhood safety. The Atlantic Monthly. 249[3]:29-
-38, 1982, March.

Edward Yourdon and Larry L. Constantine. Structured
Design: Fundamentals of a Discipline of Computer
Program and Systems Design. Prentice Hall,
Englewood Cliffs, NJ, 1979.

Edward Yourdon. When good-enough software is best. IEEE
Software. 1995, May.

Copyright © 2020 Pearson Education, Inc.

Appendix 2

Possible
Answers to the

Exercises
 

Answer 1 (from exercise 1)



To our way of thinking, class Split2 is more orthogonal. It
concentrates on its own task, splitting lines, and ignores details
such as where the lines are coming from. Not only does this
make the code easier to develop, but it also makes it more
flexible. Split2 can split lines read from a file, generated by
another routine, or passed in via the environment.

Answer 2 (from exercise 2)

Let’s start with an assertion: you can write good, orthogonal
code in just about any language. At the same time, every
language has temptations: features that can lead to increased
coupling and decreased orthogonality.

In OO languages, features such as multiple inheritance,
exceptions, operator overloading, and parent-method
overriding (via subclassing) provide ample opportunity to
increase coupling in nonobvious ways. There is also a kind of
coupling because a class couples code to data. This is normally a
good thing (when coupling is good, we call it cohesion). But if
you don’t make your classes focused enough, it can lead to some
pretty ugly interfaces.

In functional languages, you’re encouraged to write lots of
small, decoupled functions, and to combine them in different
ways to solve your problem. In theory this sounds good. In
practice it often is. But there’s a form of coupling that can
happen here, too. These functions typically transform data,
which means the result of one function can become the input to
another. If you’re not careful, making a change to the data
format a function generates can result in a failure somewhere
down the transformational stream. Languages with good type
systems can help mitigate this.

Answer 3 (from exercise 3)

Low-tech to the rescue! Draw a few cartoons with markers on a
whiteboard—a car, a phone, and a house. It doesn’t have to be
great art; stick-figure outlines are fine. Put Post-it notes that
describe the contents of target pages on the clickable areas. As
the meeting progresses, you can refine the drawings and
placements of the Post-it notes.

Answer 4 (from exercise 4)

Because we want to make the language extendable, we’ll make
the parser table driven. Each entry in the table contains the
command letter, a flag to say whether an argument is required,
and the name of the routine to call to handle that particular
command.

lang/turtle.c

 typedef struct {
   char  cmd;              /* the command letter */
   int hasArg;             /* does it take an argument */
   void (*func)(int, int); /* routine to call */
 } Command;
 
 static Command cmds[] = {
   { 'P',  ARG,     doSelectPen },
   { 'U',  NO_ARG,  doPenUp },
   { 'D',  NO_ARG,  doPenDown },
   { 'N',  ARG,     doPenDir },
   { 'E',  ARG,     doPenDir },
   { 'S',  ARG,     doPenDir },
   { 'W',  ARG,     doPenDir }
 };

The main program is pretty simple: read a line, look up the
command, get the argument if required, then call the handler



function.

lang/turtle.c

 while (fgets(buff, sizeof(buff), stdin)) {
 
   Command *cmd = findCommand(*buff);
 
   if (cmd) {
     int   arg = 0;
 
     if (cmd->hasArg && !getArg(buff+1, &arg)) {
       fprintf(stderr, "'%c' needs an argument\n", *buff);
       continue;
     }
 
     cmd->func(*buff, arg);
   }
 }

The function that looks up a command performs a linear search
of the table, returning either the matching entry or NULL.

lang/turtle.c

 Command *findCommand(int cmd) {
   int i;
 
   for (i = 0; i < ARRAY_SIZE(cmds); i++) {
     if (cmds[i].cmd == cmd)
       return cmds + i;
   }
 
   fprintf(stderr, "Unknown command '%c'\n", cmd);
   return 0;
 }

Finally, reading the numeric argument is pretty simple using
sscanf.

lang/turtle.c

 int getArg(const char *buff, int *result) {
   return sscanf(buff, "%d", result) == 1;
 }

Answer 5 (from exercise 5)

Actually, you’ve already solved this problem in the previous
exercise, where you wrote an interpreter for the external
language, will contain the internal interpreter. In the case of our
sample code, this is the doXxx functions.

Answer 6 (from exercise 6)

Using BNF, a time specification could be

time ::= hour ampm |  hour : minute ampm |    hour : minute

ampm ::= am | pm

hour ::= digit | digit digit

minute ::= digit digit

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9



A better definition of hour and minute would take into account
that an hours can only be from 00 to 23, and a minute from 00
to 59:

hour ::= h-tens digit  | digit

minute ::= m-tens digit

h-tens ::= 0 | 1

m-tens ::= 0 | 1 | 2 | 3 | 4 | 5

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Answer 7 (from exercise 7)

Here’s the parser written using the Pegjs JavaScript library:

lang/peg_parser/time_parser.pegjs

 time
   = h:hour offset:ampm              { return h + offset }
   / h:hour ":" m:minute offset:ampm { return h + m + offset }
   / h:hour ":" m:minute             { return h + m }
 
 ampm
   = "am" { return 0 }
   / "pm" { return 12*60 }
 
 hour
   = h:two_hour_digits { return h*60 }
   / h:digit           { return h*60 }
 

 minute
   = d1:[0-5] d2:[0-9] { return parseInt(d1+d2, 10); }
 
 digit
   = digit:[0-9] { return parseInt(digit, 10); }
 
 two_hour_digits
   = d1:[01] d2:[0-9 ] { return parseInt(d1+d2, 10); }
   / d1:[2]  d2:[0-3]  { return parseInt(d1+d2, 10); }

The tests show it in use:

lang/peg_parser/test_time_parser.js

 let test = require('tape');
 let time_parser = require('./time_parser.js');
 
 // time    ::= hour ampm            |
 //             hour : minute ampm   |
 //             hour : minute
 //
 //  ampm   ::= am | pm
 //
 //  hour   ::= digit | digit digit
 //
 //  minute ::= digit digit
 //
 //  digit  ::= 0 |1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 
 
 const h  = (val) => val*60;
 const m  = (val) => val;
 const am = (val) => val;
 const pm = (val) => val + h(12);
 
 let tests = {
 
   "1am": h(1),
   "1pm": pm(h(1)),
 
   "2:30": h(2) + m(30),
   "14:30": pm(h(2)) + m(30),
   "2:30pm": pm(h(2)) + m(30),



 
 }
 
 test('time parsing', function (t) {
     for (const string in tests) {
       let result = time_parser.parse(string)
       t.equal(result, tests[string], string);
     }
     t.end()
 });

Answer 8 (from exercise 8)

Here’s a possible solution in Ruby:

lang/re_parser/time_parser.rb

 TIME_RE = %r{
 (?<digit>[0-9]){0}
 (?<h_ten>[0-1]){0}
 (?<m_ten>[0-6]){0}
 (?<ampm> am | pm){0}
 (?<hour>   (\g<h_ten> \g<digit>) | \g<digit>){0}
 (?<minute> \g<m_ten>  \g<digit>){0}
 
 \A(
     ( \g<hour> \g<ampm> )
   | ( \g<hour> : \g<minute> \g<ampm> )
   | ( \g<hour> : \g<minute> )
 )\Z
 
 }x
 
 def parse_time(string)
   result = TIME_RE.match(string)
   if result
     result[:hour].to_i * 60 +
     (result[:minute] || "0").to_i +
     (result[:ampm] == "pm" ? 12*60 : 0)
   end
 end

(This code uses the trick of defining named patterns at the start
of the regular expression, and then referencing them as
subpatterns in the actual match.)

Answer 9 (from exercise 9)

Our answer must be couched in several assumptions:

The storage device contains the information we need to be
transferred.

We know the speed at which the person walks.

We know the distance between the machines.

We are not accounting for the time it takes to transfer information
to and from the storage device.

The overhead of storing data is roughly equal to the overhead of
sending it over a communications line.

Answer 10 (from exercise 10)

Subject to the caveats in the previous answer: A 1TGB tape
contains 8×2 , or 2  bits, so a 1Gbps line would have to pump
data for about 9,000 seconds, or roughly 2½ hours, to transfer
the equivalent amount of information. If the person is walking
at a constant 3½ mph, then our two machines would need to be
almost 9 miles apart for the communications line to outperform
our courier. Otherwise, the person wins.

Answer 14 (from exercise 14)

We’ll show the function signatures in Java, with the pre- and
postconditions in comments.

40 43



First, the invariant for the class:

 /**
   * @invariant getSpeed() > 0
   *        implies isFull()              // Don't run empty
   *
   * @invariant getSpeed() >= 0 &&
   *        getSpeed() < 10               // Range check
   */

Next, the pre- and postconditions:

 /**
   * @pre Math.abs(getSpeed() - x) <= 1 // Only change by one
   * @pre x >= 0 && x < 10              // Range check
   * @post getSpeed() == x              // Honor requested speed
   */
 public void setSpeed(final int x)
 
 /**
   * @pre !isFull()                     // Don't fill it twice
   * @post isFull()                     // Ensure it was done
   */
 void fill()
 
 /**
   * @pre isFull()                      // Don't empty it twice
   * @post !isFull()                    // Ensure it was done
   */
 void empty()

Answer 15 (from exercise 15)

There are 21 terms in the series. If you said 20, you just
experienced a fencepost error (not knowing whether to count
the fenceposts or the spaces between them).

Answer 16 (from exercise 16)

September, 1752 had only 19 days. This was done to synchronize

calendars as part of the Gregorian Reformation.

The directory could have been removed by another process, you
might not have permission to read it, the drive might not be
mounted, …; you get the picture.

We sneakily didn’t specify the types of a and b. Operator
overloading might have defined +, =, or != to have unexpected
behavior. Also, a and b may be aliases for the same variable, so the
second assignment will overwrite the value stored in the first. Also,
if the program is concurrent and badly written, a might have been
updated by the time the addition takes place.

In non-Euclidean geometry, the sum of the angles of a triangle will
not add up to 180°. Think of a triangle mapped on the surface of a
sphere.

Leap minutes may have 61 or 62 seconds.

Depending on the language, numeric overflow may leave the result
of a+1 negative.

Answer 17 (from exercise 17)

In most C and C++ implementations, there is no way of
checking that a pointer actually points to valid memory. A
common mistake is to deallocate a block of memory and
reference that memory later in the program. By then, the
memory pointed to may well have been reallocated to some
other purpose. By setting the pointer to NULL, the programmers
hope to prevent these rogue references—in most cases,
dereferencing a NULL pointer will generate a runtime error.

Answer 18 (from exercise 18)

By setting the reference to NULL, you reduce the number of
pointers to the referenced object by one. Once this count



reaches zero, the object is eligible for garbage collection. Setting
the references to NULL can be significant for long-running
programs, where the programmers need to ensure that memory
utilization doesn’t increase over time.

Answer 19 (from exercise 19)

A simple implementation could be:

event/strings_ex_1.rb

 class FSM
   def initialize(transitions, initial_state)
     @transitions = transitions
     @state       = initial_state
   end
   def accept(event)
     @state, action = TRANSITIONS[@state][event] || 

TRANSITIONS[@state][:default]
   end
 end

(Download this file to get the updated code that uses this new
FSM class.)

Answer 20 (from exercise 20)

…three network interface down events within five minutes
This could be implemented using a state machine, but it would be
trickier than it might first appear: if you get events at minutes 1, 4,
7, and 8, then you should trigger the warning on the fourth event,
which means the state machine needs to be able to handle reseting
itself.
For this reason, event streams would seem to be the technology of
choice. There’s a reactive function named buffer with size and offset
parameters that would let you return each group of three incoming
events. You could then look at the timestamps of the first and last
event in a group to determine if the alarm should be triggered.

…after sunset, and there is motion detected at the bottom of the
stairs followed by motion detected at the top of the stairs…
This could probably be implemented using a combination of
pubsub and state machines. You could use pubsub to disseminate
events to any number of state machines, and then have the state
machines determine what to do.

…notify various reporting systems that an order was completed.
This is probably best handled using pubsub. You might want to use
streams, but that would require that the systems being notified
were also stream based.

…three backend services and wait for the responses.
This is similar to our example that used streams to fetch user data.

Answer 21 (from exercise 21)

1. Shipping and sales tax are added to an order:

 basic order → finalized order

In conventional code, it’s likely you’d have a function that
calculated shipping costs and another that calculated tax. But we’re
thinking about transformations here, so we transform an order with
just items into a new kind of thing: an order that can be shipped.

2. Your application loads configuration information from a named
file:

 file name → configuration structure

3. Someone logs in to a web application:

 user credentials → session

Answer 22 (from exercise 22)

The high-level transformation:

 field contents as string
 



    → [validate & convert]
         → {:ok, value} | {:error, reason}

could be broken down into:

 field contents as string
     → [convert string to integer]
     → [check value >= 18]
     → [check value <= 150]
         → {:ok, value} | {:error, reason}

This assumes that you have an error-handling pipeline.

Answer 23 (from exercise 23)

Let’s answer the second part first: we prefer the first piece of
code.

In the second chunk of code, each step returns an object that
implements the next function we call: the object returned by
content_of must implement find_matching_lines, and so on.

This means that the object returned by content_of is coupled to
our code. Imagine the requirement changed, and we have to
ignore lines starting with a # character. In the transformation
style, that would be easy:

 const content     = File.read(file_name);
 const no_comments = remove_comments(content)
 const lines       = find_matching_lines(no_comments, pattern)
 const result      = truncate_lines(lines)

We could event swap the order of remove_comments and
find_matching_lines and it would still work.

But in the chained style, this would be more difficult. Where
should our remove_comments method live: in the object returned by

content_of or the object returned by find_matching_lines? And what
other code will we break if we change that object? This coupling
is why the method chaining style is sometimes called a train
wreck.

Answer 24 (from exercise 24)

Image processing.
For simple scheduling of a workload among the parallel
processes, a shared work queue may be more than
adequate. You might want to consider a blackboard
system if there is feedback involved—that is, if the results
of one processed chunk affect other chunks, as in
machine vision applications, or complex 3D image-warp
transforms.

Group calendaring
This might be a good fit. You can post scheduled
meetings and availability to the blackboard. You have
entities functioning autonomously, feedback from
decisions is important, and participants may come and
go.

You might want to consider partitioning this kind of
blackboard system depending on who is searching: junior
staff may care about only the immediate office, human
resources may want only English-speaking offices
worldwide, and the CEO may want the whole enchilada.

There is also some flexibility on data formats: we are free
to ignore formats or languages we don’t understand. We
have to understand different formats only for those
offices that have meetings with each other, and we do not



need to expose all participants to a full transitive closure
of all possible formats. This reduces coupling to where it
is necessary, and does not constrain us artificially.

Network monitoring tool
This is very similar to the mortgage/loan application
program. You’ve got trouble reports sent in by users and
statistics reported automatically, all posting to the
blackboard. A human or software agent can analyze the
blackboard to diagnose network failures: two errors on a
line might just be cosmic rays, but 20,000 errors and
you’ve got a hardware problem. Just as the detectives
solve the murder mystery, you can have multiple entities
analyzing and contributing ideas to solve the network
problems.

Answer 25 (from exercise 25)

The assumption with a list of key-value pairs is generally that
the key is unique, and hash libraries typically enforce that either
by the behavior of the hash itself or with explicit error messages
for duplicated keys. However, an array typically does not have
those constraints, and will happily store duplicate keys unless
you code it specifically not to. So in this case, the first key found
that matches DepositAccount wins, and any remaining matching
entries are ignored. The order of entries is not guaranteed, so
sometimes it works and sometimes it doesn’t.

And what about the difference in machines from development
and production? It’s just a coincidence.

Answer 26 (from exercise 26)

The fact that a purely numeric field works in the US, Canada,
and the Caribbean is a coincidence. Per the ITU spec,
international call format starts with a literal + sign. The *
character is also used in some locales, and more commonly,
leading zeros can be a part of the number. Never store a phone
number in a numeric field.

Answer 27 (from exercise 27)

Depends on where you are. In the US, volume measures are
based on the gallon, which is the volume of a cylinder 6 inches
high and 7 inches in diameter, rounded to the nearest cubic
inch.

In Canada, “one cup” in a recipe could mean any of

1/5 of an imperial quart, or 227ml

1/4 of a US quart, or 236ml

16 metric tablespoons, or 240ml

1/4 of a liter, or 250ml

Unless you’re talking about a rice cooker, in which case “one
cup” is 180ml. That derives from the koku, which was the
estimated volume of dry rice required to feed one person for one
year: apparently, around 180L. Rice cooker cups are 1 gō, which
is 1/1000 of a koku. So, roughly the amount of rice a person
would eat at a single meal.

Answer 28 (from exercise 28)

Clearly, we can’t give any absolute answers to this exercise.
However, we can give you a couple of pointers.

[85]



If you find that your results don’t follow a smooth curve, you
might want to check to see if some other activity is using some
of your processor’s power. You probably won’t get good figures
if background processes periodically take cycles away from your
programs. You might also want to check memory: if the
application starts using swap space, performance will nose dive.

Here’s a graph of the results of running the code on one of our
machines:

images/alg-speed-rust-results.png



Answer 29 (from exercise 29)

There are a couple of ways of getting there. One is to turn the
problem on its head. If the array has just one element, we don’t
iterate around the loop. Each additional iteration doubles the
size of the array we can search. The general formula for the
array size is therefore , where  is the number of iterations.
If you take logs to the base 2 of each side, you get , which by
the definition of logs becomes .

Answer 30 (from exercise 30)

This is probably too much of a flashback to secondary school
math, but the formula for converting a logarithm in base  to
one in base  is:

Because  is a constant, then we can ignore it inside a Big-O
result.

Answer 31 (from exercise 31)

One property we can test is that an order succeeds if the
warehouse has enough items on hand. We can generate orders
for random quantities of items, and verify that an "OK" tuple is
returned if the warehouse had stock.

Answer 32 (from exercise 32)

This is a good use of property-based testing. The unit tests can
focus on individual cases where you’ve worked out the result by

some other means, and the property tests can focus on things
like:

Do any two crates overlap?

Does any part of any crate exceed the width or length of the truck?

Is the packing density (area used by crates divided by the area of
the truck bed) less than or equal to 1?

If it’s part of the requirement, does the packing density exceed the
minimum acceptable density?

Answer 33 (from exercise 33)

1. This statement sounds like a real requirement: there may be
constraints placed on the application by its environment.

2. On its own, this statement isn’t really a requirement. But to find out
what’s really required, you have to ask the magic question, “Why?”
It may be that this is a corporate standard, in which case the actual
requirement should be something like “all UI elements must
conform to the MegaCorp User Interface Standards, V12.76.”
It may be that this is a color that the design team happen to like. In
that case, you should think about the way the design team also likes
to change their minds, and phrase the requirement as “the
background color of all modal windows must be configurable. As
shipped, the color will be gray.” Even better would be the broader
statement “All visual elements of the application (colors, fonts, and
languages) must be configurable.”
Or it may simply mean that the user needs to be able to distinguish
modal and nonmodal windows. If that’s the case, some more
discussions are needed.

3. This statement is not a requirement, it’s architecture. When faced
with something like this, you have to dig deep to find out what the
user is thinking. Is this a scaling issue? Or performance? Cost?
Security? The answers will inform your design.

4. The underlying requirement is probably something closer to “The
system will prevent the user from making invalid entries in fields,



and will warn the user when these entries are made.’’
5. This statement is probably a hard requirement, based on some

hardware limitation.

And here’s a solution to the four-dots problem:

images/four_dots_answer.png

Copyright © 2020 Pearson Education, Inc.

[85]

Footnotes

Thanks for this bit of trivia goes to Avi Bryant (@avibryant)


